Frank R. Schmidt

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

International Conference on Machine Learning (ICML) - Jun 2019
Download the publication: 4.7 MB 
Share the publication:
A rapidly growing area of work has studied the existence of adversarial examples, datapoints which have been perturbed to fool a classifier, but the vast majority of these works have focused primarily on threat models defined by L_p norm-bounded perturbations.
In this paper, we propose a new threat model for adversarial attacks based on the Wasserstein distance. In the image classification setting, such distances measure the cost of moving pixel mass, which naturally cover "standard" image manipulations such as scaling, rotation, translation, and distortion (and can potentially be applied to other settings as well). To generate Wasserstein adversarial examples, we develop a procedure for projecting onto the Wasserstein ball, based upon a modified version of the Sinkhorn iteration.
The resulting algorithm can successfully attack image classification models, bringing traditional CIFAR10 models down to 3% accuracy within a Wasserstein ball with radius 0.1 (i.e., moving 10% of the image mass 1 pixel), and we demonstrate that PGD-based adversarial training can improve this adversarial accuracy to 76%. In total, this work opens up a new direction of study in adversarial robustness, more formally considering convex metrics that accurately capture the invariances that we typically believe should exist in classifiers.

This paper is also stored on arXiv.

Images and movies

teaser.png (24 KB)

BibTex references

  author       = "Wong, Eric and Schmidt, Frank R. and Kolter, J. Zico",
  title        = "Wasserstein Adversarial Examples via Projected Sinkhorn Iterations",
  booktitle    = "International Conference on Machine Learning (ICML)",
  month        = "Jun",
  year         = "2019",
  publisher    = "PMLR",
  url          = ""