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Abstract—Brain magnetic resonance imaging (MRI) in patients
with Multiple Sclerosis (MS) shows regions of signal abnormal-
ities, named plaques or lesions. The spatial lesion distribution
plays a major role for MS diagnosis. In this paper we present a 3D
MS-lesion segmentation method based on an adaptive geometric
brain model. We model the topological properties of the lesions
and brain tissues in order to constrain the lesion segmentation
to the white matter. As a result, the method is independent of
an MRI atlas. We tested our method on the MICCAI MS grand
challenge proposed in 2008 and achieved competitive results. In
addition, we used an in-house dataset of 15 MS patients, for
which we achieved best results in most distances in comparison
to atlas based methods. Besides classical segmentation distances,
we motivate and formulate a new distance to evaluate the quality
of the lesion segmentation, while being robust with respect to
minor inconsistencies at the boundary level of the ground truth
annotation.

Index Terms—Multi label segmentation, Graph-Cuts, topolog-
ical constraints, connectivity.

I. INTRODUCTION

Multiple Sclerosis (MS) is an inflammatory demyelinating

disease of the central nervous system and its hallmarks are

demyelination plaques, inflammation, axonal damage, and

edema [1]. MS imaging pathology, which is routinely used

for disease diagnosis, shows typical abnormalities in the MR

signal of the White Matter (WM), known as lesions. Accord-

ingly, lesion identification is a crucial process in quantifying

the burden of the disease. In clinical routine the lesions are

manually processed. This process is time consuming, leading

to subjective variability, and to a lack of reproducibility.

Recently, a variety of methods have been proposed to seg-

ment WM lesions for MS patients (cf. [2], [3] for an overview).
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Fig. 1. Lesion segmentation. Starting from a 3D image stack (a) containing
c > 0 image contrasts (here the c = 2 is for FLAIR and T1-w images), we
consider a geometric brain model to find the WM lesions of an MS patient (b).

In general most of the methods use an atlas precomputation,

a local classifier or a combination of the two paradigms.

Many methods rely strongly on an atlas driven pre-

segmentation that is then post-processed [4], [5], [6]. Even

though an atlas works reasonably well, the exact boundary

between WM and Grey Matter (GM) is difficult to detect due

to brain inter-variability. As a result, the detected WM can

contain areas of GM that might be segmented as lesion. In

addition, since the exact location of lesions cannot be pre-

learned, it is hard to apply a purely atlas-driven approach to

lesion segmentation.

Local classifiers can be seen as a binary decision process

which discriminates between lesions and non-lesion voxels.

These classifiers do not consider the geometric structure of the

brain and assume either a good pre-selection of the WM [7],

[8] or that lesions can be easily detected as outliers with

respect to a dictionary based brain model [9], [10].

In this work, we propose an automated segmentation method

that uses a geometric model of the brain instead of an atlas

(cf. Fig. 1). Instead of learning the location of different tissue

types, we propose topological priors such as the connectivity

of GM. In addition, we model the relative locations of each

tissue type, e.g. the WM lesions are surrounded by WM and

the WM is surrounded by GM (cf. l.h.s. of Fig. 3). As a

result, we restore the benefits of a geometric model without

the artifacts that an atlas registration would entail.

To benefit from these advantages, we have to minimize an

energy that is an instance of an NP-hard problem class. In this

paper we combine different approximation methods [12], [13]

in order to find a meaningful local minimum of this energy.

To make our method applicable to a wide range of images

obtained by different MR systems and protocols, we represent

our parameters with respect to more general hyper-parameters.
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Fig. 2. Pre-processing. Based on the original images, such as the FLAIR image (a), a bias field (b) is computed [11] in order to correct (c) the input images.
The bias field computation also provides a coarse segmentation into GM, WM and CSF (d). These segments are refined to obtain segments for SGM and

V as well (e). Strongly eroding these segments Ŝ
(0)
ℓ

, provides the segments Ŝℓ that we treat as hard constraints (f) in our framework (cf. Section III-A).

These hyper-parameters are estimated in a hyper-parameter

learning approach, for which we can find the global optimum.

To test the proposed method and compare it against state-

of-the-art methods, we evaluate the lesion segmentation results

with standard distances. We also introduce an additional

distance that is more robust to minor changes in the lesion

annotation.

A. Related Work

Atlas based methods usually start with a registration of the

patient data to an atlas in order to determine the locations of

the major brain tissue such as GM, WM, and the Cerebro-

Spinal Fluid (CSF). Due to the high inter-brain variability this

step may result in an erroneous tissue classification.

Constraining the lesion segmentation into or close to the

WM is a common procedure when dealing with atlas based

approaches [14], [15]. Both papers perform an initial atlas

based segmentation of GM, WM, CSF. Kamber et al. [14]

showed that confining the lesions into plausible white matter

locations, calculated from a set of healthy volunteers, largely

improves the results. As a drawback, lesions which are close

to the cortex or the subcortical GM are missed. Val Leemput

et al. [15] relaxed this inclusion by imposing that the lesions

should be located in the vicinity of the WM.

Lesion-TOADS (Topology-preserving Anatomical Segmen-

tation) [5] is an atlas based method that uses the information

from a topological and an intensity atlas created from healthy

volunteers. As a result, lesions are ignored in a first segmen-

tation step. In a second step, a two class separation within

the WM mask is performed to separate lesions from WM.

The quality of the resulting lesion segmentation depends on

the first segmentation step. In contrast to this approach, we

model the location of WM lesions while segmenting the rest

of the brain. In addition, we are able to incorporate topological

information without the use of an atlas.

The method proposed in [4] is less sensitive to atlas-driven

misclassification. As a first step, it extracts the WM and GM

tissues from an initial atlas driven segmentation. In a second

step, outliers within the WM mask are extracted as long as they

differ from the intensity model of GM. A morphological post-

precessing results in a lesion segmentation. An extension, the

Lesion Segmentation Tool (LST), was proposed by Schmidt et

al. [6]. It uses the outliers as initialization of a region growing

approach for lesion segmentation. Both approaches are very

sensitive to local information.

The Model of Population and Subjects (MOPS) method [16]

extends the classical atlas based approach using local intensity

models instead of global ones. This method performs a tissue

segmentation of GM, WM, CSF coupling global and local

Gaussian Mixture Models (GMM). The global GMMs are

computed from the patient data. The local models are extracted

from a dataset of healthy volunteers, estimating a Gaussian

Mixture Model (GMM) per voxel. The lesions are initially

identified as the voxels with a low probability of belonging to

any brain tissue, and subsequently, a graph-cut segmentation

is performed.

It is also common to train lesion classifiers. An atlas based

brain initial segmentation is often combined with a pixel-wise

classification. In the presence of small lesions these classifiers

may mix lesion and WM information. Warfield et al. [17]

proposed an iterative process that combines image registration

with k-nearest-neighbor classification. The atlas, against which

the patient data is registered, is constructed from a single

volunteer by manually annotating relevant anatomic structures.

The labels, together with additional features extracted from

the patient data, are classified as GM, WM, CSF or lesion.

Additionally, the localization of GM and WM is improved

by employing a region growing technique. This allows for a

high penalty for misclassified GM and WM voxels, which

ensue in a more precise lesion segmentation. Zijdenbos et

al. [7] created a pipeline based on an Artificial Neural Network

(ANN) classifier to discriminate lesion and non lesion voxels,

using multiple images and three tissue priors GM, WM, and

CSF calculated from an atlas of healthy volunteers. Geremia

et al. [8] proposed a method in which a lesion classifier is

trained in a random forest framework. While the classifier

takes a neighborhood into account, the final decision is made

for every pixel independently. Cabezas et al. [18] combine

these classifiers with others in a Gentleboost framework.

Patch-based methods have also been developed for brain

lesion segmentation. The size of the patch plays an important

role in the representation of lesion and healthy tissue. In

addition a threshold value needs to be estimated to distinguish

the lesion voxels from false positives. This may produce a

noisy lesion segmentation, since there is no neighborhood

information considered. Weiss et al. [9] sparsely encode the

patient image using 3 × 3 × 3-patches as a dictionary and
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GM λCSF,GM 0 λGM,WM ∞ ∞ ∞
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V ∞ ∞ ∞ λSGM,V ∞ 0

WM

GM

CSF

L

SGM

V

L

Fig. 3. Geometric model. The relationship between different tissue layers ℓ1 and ℓ2 is modeled by weighting their interface with λℓ1,ℓ2 ≥ 0. An infinite cost
excludes two labels from having a common boundary. The λ-values are based on the geometric model that is depicted on the right hand side (cf. Section III-B).

the reconstruction error gives the lesion segmentation. Guizard

et al. [10] propose a non-local mean approach introducing a

rotational invariant distance measure (RMNMS) to account for

the diversity of MS lesions.

Recently, also non atlas based methods have been proposed

for lesion segmentation. Gao et al. [19] propose a regularized

segmentation which encodes each tissue type with a constant

intensity value while taking a global bias correction field into

account. A fuzzy segmentation is computed by formulating

a global energy functional that is convex in each variable.

A local minimum is computed by an iterative minimization

approach. A graph-cut based segmentation was proposed in

Garcia-Lorenzo et al. [20], where the authors use a binary

segmentation to discriminate the lesions from the healthy

tissues. Post-processing steps are also included to remove

lesions appearing in external CSF and close to the brain

borders. While these methods are free from any atlas mis-

classification, there is no geometric information encoded. We

believe that encoding geometric information helps to obtain a

more robust segmentation.

II. PRE-PROCESSING

In the following, we treat a medical image as a mapping

I : Ω → R
c that assigns to each voxel x ∈ Ω of the image

domain Ω exactly c ∈ N image contrasts1 I(x) ∈ R
c. The

goal of a brain segmentation is to find a labeling f : Ω → L
that assigns to each voxel x a label f(x) ∈ L of the

label space L := {CSF,GM,WM, SGM,V,L}. These labels

correspond to sulcal CSF (CSF), Grey Matter (GM), White

Matter (WM), Subcortical Grey Matter nuclei (SGM), Ventri-

cles (V) and Lesions (L), respectively. In addition, we denote

Sℓ = {x ∈ Ω|f(x) = ℓ} as the segment of the label ℓ. Note

that in our setting, the label V anatomically includes the two

lateral ventricles.

In a first step, we align the c image contrasts with a rigid

registration, which is estimated using the default parameters

of the ITK libraries [21]. Subsequently we remove the skull in

the images via the BET toolkit [22] and perform a bias-field

correction by extending [11] to c > 1 image contrasts.

In a second step, we compute a partial segmentation that

we will use as a hard constraint for our method. The bias

correction [11] already provides us with a combination of the

six labels in L, i.e., csf = {CSF,V}, gm = {GM, SGM},

1 Here, c = 2 may reflect a setup of FLAIR and T1-w image contrasts.

WM as shown in Fig. 2(d). In order to separate V from

CSF, we perform a binary graph cut segmentation [23] on

the csf mask. Similarly, we also perform the separation of

SGM from GM on the gm mask via graph cut. This provides

for an initial labeling f0 : Ω → L − {L} and an initial

segmentation
(

Ŝ
(0)
ℓ

)

ℓ∈L
, where Ŝ

(0)
ℓ := {x ∈ Ω|f0(x) = ℓ}

(cf. Fig. 2(e)). Since the method [11] performs a three class

segmentation, the lesions are inside Ŝ
(0)
WM, Ŝ

(0)
GM, and Ŝ

(0)
SGM. To

eliminate these misclassified voxels we remove independently

from these segments the voxels with an intensity higher than

the median value in the FLAIR image. Afterwards, we erode

each segment with a sphere of radius 2mm, resulting in the

partial segmentation Ŝℓ. Due to the strong erosion, it covers

less than 15% of the whole image domain (cf. Fig. 2(f)). While

the Ŝℓ provides a strong partial segmentation, it will guide the

segmentation process.

The following section describes the energy that we want

to minimize to obtain a full brain segmentation that provides

us with a reliable lesion segmentation. In the optimization

process, described in Section IV, we rely on a few voxels that

guide the minimization. These voxels are represented by the

partial segmentation Ŝℓ and we treat them as hard constraints

(cf. Section III-A).

III. GEOMETRIC BRAIN MODEL

Given an input image I : Ω → R
c, we are looking for the

most likely brain labeling f : Ω → L. Using Bayes’ theorem,

it is common to write the posterior probability P (f |I) as

P (f |I) =
P (I|f) · P (f)

P (I)
(1)

The maximization of (1) is equivalent to the minimization of

− logP (f |I) = − log(P (I|f))− log(P (f)) + const., (2)

where P (I|f) describes the likelihood that the image I orig-

inates from the labeling f , and P (I) denotes the probability

that the observed image is possible. We treat this probability

as a constant, since our brain segmentation is not affected by

P (I). To estimate this likelihood, a standard way is to compute

the probabilistic intensity models for each tissue type (cf.

Section III-A). Hence, we refer to EApp(f) := − log(P (I|f))
as the appearance energy.
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Fig. 4. Connectivity. Segmenting (a) without the connectivity constraint may lead to a disconnected GM (arrow in (b)). Enforcing connectivity as in [24] creates
a thin artifact connection path (c). [25] uses an appearance based distance map (d) to enforce connectivity, but fails in our multi-labeling setting (arrow in (e)).
Using the proposed gradient based distance map (f) instead results in a connected GM (g) and an improved lesion segmentation (circle in (e) and (g)).

P (f) models the prior information of our geometric model,

which is the main contribution of this work. Here we model

two independent geometric properties, i.e., P (f) = PLoc(f) ·
PGeo(f). Firstly, only certain transitions between tissue types

are allowed, resulting in PLoc(f) (cf. Section III-B). Secondly,

we want to enforce some global geometric properties of

the brain, resulting in PGeo(f) (cf. Section III-C). Defining

ELoc(f) := − log(PLoc(f)) as the local geometric energy and

EGeo(f) := − log(PGeo(f)) as the global geometric energy,

we seek to minimize the following energy

E(f) := EApp(f) + ELoc(f) + EGeo(f). (3)

In the remainder of this section, we will describe these

different energies in detail. The minimization of (3) will be

addressed in Section IV.

A. Appearance Energy

In brain lesion segmentation a standard way to represent

tissue intensities is to model each tissue type with a Gaussian

Mixture Model (GMM) [16], [15]. In this work we follow the

same idea and we denote the GMM probability of a tissue

ℓ ∈ L as pℓ.
The voxels in the precomputed partial segmentation Ŝℓ (cf.

Section II) are hard constraints and will not change their label,

so the probability that a voxel x is labeled ℓ is

Pℓ(x) =











1 if x ∈ Ŝℓ

0 if ∃ℓ′ 6= ℓ : x ∈ Ŝℓ′

pℓ(I(x)) otherwise.

(4)

For the appearance model Pℓ, we assume that each voxel x
that belongs to the tissue type ℓ is an independent, identically

distributed random variable. Thus the appearance energy can

be written as

EApp(f) =− log

(

∏

x∈Ω

Pf(x)(I(x))

)

=
∑

x∈Ω

− log
(

Pf(x)(I(x))
)

(5)

where we assumed − log(0) = +∞. Due to the used proba-

bility Pℓ in (4), every segmentation f will be penalized by an

infinite cost if any voxel x ∈ Ŝℓ in the partial segment Ŝℓ will

be assigned a label f(x) 6= ℓ. This implies that Ŝℓ ⊂ Sℓ for all

ℓ ∈ L − L, i.e., the segmentation Sℓ must always contain Ŝℓ.

Therefore the inclusion Ŝℓ ⊂ Sℓ becomes a global constraint

that is always enforced during the optimization process.

B. Local Geometric Model

To avoid overly noisy labelings it is common to penalize

neighboring voxels if their labels disagree. This penalty is

represented as a pair-wise term between adjacent voxels. In

this work we use these terms to additionally impose our local

topological constraints. To this end, we use a 6-neighborhood

N (x) for each voxel and define the geodesic surface area as

ELoc(f) =
∑

x∈Ω

∑

y∈N (x)

λf(x),f(y) · g(x, y). (6)

where g : Ω × Ω → R
+ is a gradient based function

which provides a high penalty between voxels of similar

intensities [23], [26], [27]:

g(x, y) =

exp

(

− 1
2

(

|I(x)−I(y)|
σ

)1.5
)

dist(x, y)
+ ǫ, (7)

where ǫ is a positive scalar value which guarantees that g(x, y)
always exceeds the threshold ǫ. σ guarantees that our method

does not depend on the intensity range of the image I and the

distance dist(·, ·) between two voxels takes the anisotropic

resolution of I into account. The symmetric weighting factor

λf(x),f(y) handles different label transitions individually. To

favor a smooth segmentation we set λℓ1,ℓ2 = 0 if ℓ1 = ℓ2.

In addition, we only want to allow those segmentations that

satisfy the following proposed topological conditions (cf. r.h.s.

of Fig. 3):

CSF Since it is only adjacent to GM, we set λCSF,ℓ = ∞
for ℓ ∈ {WM, SGM,L,V}.

GM Since it is surrounded by CSF and it is adjacent to

the WM, we set λGM,ℓ = ∞ for ℓ ∈ {SGM,L,V}.

WM The WM surrounds the lesions and is adjacent to the

GM as well as the SGM. Hence, we set λWM,ℓ = ∞
only for ℓ ∈ {CSF,V}.

L Since they are only adjacent to WM, we set λL,ℓ =
∞ for ℓ ∈ {CSF,GM, SGM,V}.

SGM Since it is adjacent to the ventricle and the WM, we

set λSGM,ℓ = ∞ for ℓ ∈ {CSF,GM,L}.

V We model the ventricle as being surrounded by the

subcortical GM. Therefore, we set λV,ℓ = ∞ for

ℓ ∈ {CSF,GM,WM,L}.
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Fig. 5. Minimal lesion size. Segmenting (a) without the constraint (9)
results in a noisy segmentation (b). After enforcing the constraint, small lesion
segments either disappear or grow to satisfy the constraint (arrow in (b,c)).

The different transitions are illustrated in the sketch of

Fig. 3, while the values for λℓ1,ℓ2 are summarized in the table

of Fig. 3. Note that the six labels allow only for five different

transitions, which makes the use of α/β swap in Section IV

very appealing.

C. Global Geometric Model

The probability distributions pℓ for ℓ ∈ {GM,L, SGM} are

difficult to discriminate. Therefore, we introduce additional

global constraints to the segments Sℓ of these labels. Anatom-

ically, the GM is continuously connected and we assume

in our model that the SGM is also connected (cf. Fig. 3).

Therefore, we can enforce a connectivity prior on SGM and

SSGM, resulting in the energy ECC. In order to be robust with

respect to noise in the WM, we also like to enforce that each

lesion contains at least a ball of radius 1 voxel, resulting in

the energy Emin. These two energies are defined as:

ECC(f) =

{

∞ if SGM or SSGM are not connected

0 otherwise
(8)

and

Emin(f) =











0 ∀A ⊂ SL is connected component

∃x ∈ A : ∀y 6∈ A : ‖x− y‖ > 1

∞ otherwise

(9)

Combining these two energies leads to:

EGeo(f) = ECC(f) + Emin(f).

An example of the minimal size prior is shown in Fig. 5.

The lesions with a radius smaller than 1 voxel can disappear

or increase in size (cf. Fig. 5(c)).

IV. OPTIMIZATION

Since the energy (3) is not submodular [24], we search

for a local optimum which will depend on a good initial-

ization. Following a coarse-to-fine approach, we subsample

the image I : Ω → R
c and its image domain Ω by a

factor of s
(1)
x1

× s
(1)
x2

× s
(1)
x3

, where x = (x1, x2, x3), to obtain

I1 : Ω1 → R
c. By subsampling I1 with another factor of

s
(2)
x1

× s
(2)
x2

× s
(2)
x3

we obtain I2 : Ω2 → R
c. The subsampling

factors s
(1)
x1

, s
(1)
x2

, s
(1)
x3

, s
(2)
x1

, s
(2)
x2

, s
(2)
x3

≥ 1, and their values de-

pend on the resolution of the data.

In Section IV-A we compute an initialization for the labeling

f |Ω2 (cf. Fig. 6(b)). In Sections IV-B we improve f |Ω2

(cf. Fig. 6(c)). After finding a local minimum for f |Ω2 (cf.

Fig. 6(d)), we iteratively increase the resolution and find

local minima for f |Ω1 and finally for f itself (cf. Fig. 6 (e-

f)). The λℓ1,ℓ2 values of Section III-B are fixed parameters

with the exception of λWM,L. In Section IV-C we learn

globally optimal hyper-parameters to choose the correct value

for λWM,L.

A. Computing the initial labeling

A multi-labeling problem is in general NP-hard, but it

becomes polynomial if a total ordering ≤L of L is given

such that λℓ1,ℓ2 is convex with respect to this ordering.

Note that the λℓ1,ℓ2 values, in Equation (6), are constant

for each pairs of labels (ℓ1, ℓ2) ∈ L2. However, λ can also

be interpreted as a function from the label space L2 to its

value: λ : L2 → R. Ishikawa studied λ functions that can

be written as λℓ1,ℓ2 = F (|ℓ1 − ℓ2|) for a convex function

F [13]. The polynomial runtime of [13] was achieved by first

allowing an independent binary decision for each label ℓ and

thus expanding the label space to the set of its subsets 2L.

Therefore, the multi-labeling f : Ω → L becomes the extended

multi-labeling f̂ : Ω → 2L. Secondly, Ishikawa introduced the

inclusion constraints

ℓ ∈ f̂(x) ⇒ ℓ′ ∈ f̂(x) for all ℓ′ ≤L ℓ,

which ensure that f̂(x) has the form {ℓ′ ∈ L|ℓ′ ≤L ℓ} for

some ℓ ∈ L. He showed that the data terms can be chosen in a

way that an optimum of the original multi-labeling f : Ω → L
is derived from the optimal f̂ : Ω → 2L via f(x) := max f̂(x).

Delong and Boykov proved in [28] that a simplified problem

of what we consider in (3) fits into the Ishikawa formulation,

which can be globally optimized. To achieve this, we have to

change the label space and we can only consider the energy

E0(f) := EApp(f) +ELoc(f). For the altered label space, we

can either choose a smaller label space or an extended label

space. We can now consider the maximal lower bound Ľ ⊂ L
and the minimal upper bound L̂ ⊃ L that fit into the Ishikawa

construction. Since the label set Ľ = L − {L} ignores the

lesion information, we rather use

L̂ := {CSF,GM,WM,L, {L, SGM}, SGM,V,F2} . (10)

This produces two labels that we did not intend to model. As

a result, the lesions and the SGM are not separated, leading

to the false label F1 := {L, SGM}. The false label F2 is an

artifact from the ventricle model and is embedded inside V
(cf. Fig.6(b)).

We use the global optimum f̂ : Ω2 → L̂ of E0(·) to

find a feasible labeling f : Ω2 → L with respect to E(·),
i.e., a labeling that satisfies E(f) < ∞. Since F2 uses the

same appearance model as V, we replace F2 with V. Since

F1 combines L and SGM, we have to separate these two

labels. In order to disallow transition between SGM and

L, some of the WM has to appear between SGM and L.

To solve this, we perform α/β-swapping [12] in the region

identified by SL ∪ SSGM ∪ SF1
with respect to the label space

{WM, SGM,L}. This leads to a mapping f : Ω2 → L with

E0(f) < ∞, but it may still violate some global geometrical
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Fig. 6. Method overview. Given the input images including the FLAIR image (a), minimizing E0(f) produces the initial labeling (b), which contains the
false labels F1 (grey) and F2 (dark green). After removing the false labels (c), the method improves the computed minima in a coarse-to-fine approach (d-f).

constraints, resulting in E(f) = ∞. In this case, the minimal

lesion size constraint cannot be violated due to our subsam-

pling that results in a lesion diameter that is larger than 1 voxel

in the original resolution. Consequently, either SGM or SSGM

are not connected. Without loss of generality we assume that

SGM is not connected.

A connectivity prior is in general NP-hard. Vicente et

al. [24] proposed a connectivity constraint for binary image

segmentation and for user selected points in the image. These

conditions limit the automated process and the multi-labeling

segmentation. In a recent approach, Stühmer et al. [25] pro-

posed a connectivity prior introducing a distance measure

based on the image intensities. This is a feasible approach if

the connected object has a distinguishable intensity distribution

from the other labels/objects. Since the GM, SGM, and the L
have similar intensity distributions, we use a distance function

based on the gradient values (cf. Fig. 4(f)) which is able to

correctly connect the GM tissue and recover some L labels (cf.

Fig. 4(g)). After encoding these extra constraints, we obtain

an initial segmentation f : Ω2 → L that satisfies E(f) < ∞
(cf. Fig. 6 (c)).

B. Local Energy Minimization

In Section IV-A we showed how to obtain a feasible initial-

ization f : Ω2 → L, i.e., a labeling that satisfies E(f) < ∞.

In this section we improve our labeling in order to find a local

minimum. Therefore, we perform all possible α/β-swaps on

the whole label space L. Note that even though we have to

deal with six labels, only five of the 15 possible α/β-swaps

are necessary (cf. Fig. 3).

Every α/β-swaps does not increase the energy, and it halts

as soon as the energy does not improve between two iterations.

Upon convergence, we improve the GMMs pℓ of Section III-A

in an EM-like fashion. Since we initialize the GMMs with

respect to the hard constraint Ŝℓ (cf. Section II), we want

to avoid large jumps in the intensity model during GMM

Algorithm 1

1: Find initial labeling according to Section IV-A

2: repeat

3: Local optimization w.r.t. α/β-swaps and GMM re-

estimation

4: until convergence

5: Increase resolution if possible and goto Line 2

optimization. The GMM optimization usually starts with an

initial distribution pℓ and improves it via gradient descent to

the distribution qℓ. The idea that we follow here is to use only

“half of the gradient update”. This still reduces the overall

energy without drastically changing the intensity models.

In the case of purely Gaussian models pℓ = G(µp,Σp) and

qℓ = G(µq,Σq), we can compute an average with respect to

the Bhattacharyya distance and obtain the Gaussian G(µ,Σ)
with

µ =
µp + µq

2
Σ = ΣpUΛ

1

2U⊤,

where UΛU⊤ is the diagonalization of Σ−1
p Σq. In the

case of Gaussian mixture models pℓ = G(µp,Σp, αp) and

qℓ = G(µq,Σq, αq) with multiple Gaussians that are mixed

with respect to the mixture coefficients α, we first match the

models of p and q via the linear assignment approach [29]

using the pairwise Bhattacharyya distance as a data term.

Afterwards, we compute the average of the matched models

as above and set α =
αp+αq

2 .

The local optimization with respect to α/β-swaps and

GMM re-estimation is iterated until convergence. Note that

in the GMM re-estimation the hard constraints Ŝℓ are always

used since Ŝℓ ⊂ Sℓ is always enforced (cf. Section III-A).

Upon convergence, we extend the resolution from Ω2 to Ω1

and re-iterate until a locally optimal labeling f |Ω1 is found.

In a final step, we optimize in the original resolution and

obtain a local optimal f : Ω → L. The complete method is

summarized in Algorithm 1, and the process is shown in Fig. 6.

For higher resolutions, the minimal lesion size constraint (9)

may be violated. In this case, we enforce the center of mass cA
of each connected component A ⊂ SL such that f(cA) = L
implies f(x) = L for all ‖x− cA‖ ≤ 1 voxel, which can

be easily integrated into the graph cut optimization [28].

After introducing these constraints, small lesions will either

be automatically removed or extended to include a ball with

a diameter of 3 voxels.

C. Hyper-parameter Learning

The GMM parameters i.e., means and covariances, are

optimized for every tissue with an Expectation Maximization

algorithm [30]. The remaining parameters are the five different

λ terms in Section III-B. Since we are mainly interested

in lesion segmentation, we empirically fix every λ value

except for λWM,L. In order to make this term adaptive to the

contrast in the image, we model it as being affinely dependent
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Fig. 7. Distance Dice. Given ground truth GT and segmentation S (a), the Dice coefficient D combines FN, FP and TP (b). Introducing a tolerance zone of
distance θ (dashed lines) improves these quantities. As a result, we obtain that Dθ is more tolerant with respect to small changes along the boundary (c).

on the maximum magnitude mg(I) := maxx∈Ω ‖∇I(x)‖ of

the image gradient ∇I(x) = ( ∂I
∂x1

, ∂I
∂x2

, ∂I
∂x3

), i.e., λWM,L =
m ·mg(I) + b where m and b are the affine hyper-parameters

that we would like to choose optimally.

We can find the optimal values for m and b by using

the parametric max flow framework [31]. It provides many

finite intervals for λWM,L for each of the patients of the

training dataset. For each λWM,L a segmentation is computed,

and the corresponding energy value is stored. These intervals

tessellate the (m, b)-domain into a finite number of regions.

For each region the energy value is computed as the sum of the

corresponding energies in the training set. The region with the

globally minimal energy provides us with the optimal values

for the hyperparameter m and b.

V. EXPERIMENTS

In Section V-A we describe the commonly used measures

to evaluate the quality of a segmentation method. In addition,

we introduce a new measure called Distance Dice Dθ. The

goal of this new measure is to be more robust with respect

to perturbations within a small distance θ along the lesion

segmentation boundaries.

We initially evaluated our MS lesion segmentation method

on the MS grand challenge clinical dataset [32] (cf. Sec-

tion V-B). The challenge was proposed in 2008 and the pro-

vided images have a different signal to noise ratio and contrast

to noise ratio compared to images created with more modern

hardware and acquisition protocols. Therefore, we additionally

tested the methods on an in-house database (cf. Section V-C).

Each method that we compared against performed better on

the in-house dataset than on the MICCAI dataset (compare

Tables I and II).

For all the experiments we used T1-w and FLAIR

images of each patient. We empirically set λCSF,GM = 1,

λGM,WM = 2, λWM,SGM = 10 and λSGM,V = 1.

The parameters of Equation (7) are empirically

set to ǫ = 10−2, and σ =
(

− 1
2
mg(I)1.5

log(ǫ)

)
1

1.5

. The

subsampling factors for the MICCAI database have

been set to s
(1)
x1

= s
(1)
x2

= s
(1)
x3

= s
(2)
x1

= s
(2)
x2

= s
(2)
x3

= 2.

For the in-house database we set s
(1)
x3

= 1 and

s
(1)
x1

= s
(1)
x2

= s
(2)
x1

= s
(2)
x2

= s
(2)
x3

= 2. Note that the there

is no downsampling in the through-plane x3 axis for I1 since

the in-house data has a lower resolution in the through-plane

direction (Section V-C).

A. Measures

Validation measures often used in segmentation are: Volume

Difference (VD), average symmetric Surface Distance (SD),

True Positive Rate (TPR) and False Positive Rate (FPR).

VD and SD are defined on the voxel-level, while TPR and

FPR are defined on the lesion-level [32]. VD is defined as

VD = |VS−VGT |
VGT

where VS and VGT denote the volume of the

Segmentation (S) and of the Ground Truth (GT) annotation,

respectively. The optimal value is zero. SD is defined as

SD =

∑

x∈∂GT d(x, ∂S) +
∑

y∈∂S d(∂GT, y)

|∂S|+ |∂GT|

where ∂S and ∂GT represent the surface voxels of S and GT

respectively, and d represents the Euclidean distance. The opti-

mal value for SD is zero. TPR is defined as TPR = |S∩GT |
|GT | ,

where S and GT are the segmentation and manual annotation

respectively; the best value is 100%. The FPR = |S|−|S∩GT |
|S|

and the best value is zero.

Additionally, commonly used measures are the Precision

P = TP
TP+FP

where TP=true positive, FP=false positive and

FN=false negative, the Recall R = TP
TP+FN

and the Dice

coefficient D = 2·TP
FP+FN+2·TP

. These measures are defined

on the voxel level and the best value is 100%. Note that the

true positive rate on the voxel level (TPRv) is equivalent to the

recall R, and the FPRv is equivalent to 100− P where P is

the precision. Since the GT is often inaccurate at the boundary

of a lesion, we introduce a distance-based Dice coefficient Dθ

where θ defines a tolerance zone on the border (internal and

external) of the GT. The voxels inside the tolerance zone are

neither considered as FN nor as FP, resulting in Dθ ≥ D
(cf. Fig. 7). It is similar to the slack borders measure that

was introduced in [33] to evaluate lung segmentations. This

measure ignores the information around the boundary for TP

as well as for FN and FP. Therefore, it may be smaller than

the Dice coefficient. The distance Dice Dθ on the other hand

always provided a higher or equal measure than the classical

Dice coefficient.

B. MICCAI Dataset

The MS lesion challenge proposed in 2008 [32] consists

of 20 patient data in the training set and 22 in the test

set. The patients were scanned at the University of North

Carolina (UNC) and at the Children’s Hospital of Boston

(CHB). While the acquisition protocol consists of T1-w, T2-

w and FLAIR images, we only used the T1-w and FLAIR



TABLE I
COMPARATIVE RESULTS ON THE MICCAI MS GRAND CHALLENGE TEST SET [32].

Method Hospital VD SD TPR FPR Score

1 rat. 2 rat. 1 rat. 2 rat. 1 rat. 2 rat. 1 rat. 2 rat.

Lesion-TOADS [5]
UNC 45.6 128.2 8.3 12.7 44.1 61.5 68.1 72.8

79.96
CHB 75.3 57.6 6.5 5.3 52.2 52.2 79.2 69.1

LST [6]
UNC 63.3 110.5 9.5 13.5 48.5 59.7 73.6 73.4

80.00
CHB 50.4 69.3 5.9 4.4 50.0 55.9 78.8 65.8

Geremia et al. [8]
UNC 42.1 56.7 8.0 10.7 43.5 66.8 74.7 82.8

82.07
CHB 47.6 49.7 4.2 2.0 56.1 54.0 78.0 64.3

MOPS [16]
UNC 29.4 54.1 9.9 11.3 36.1 62.3 46.2 54.7

84.46
CHB 43.3 53.0 5.2 6.4 45.8 45.0 42.7 38.9

RMNMS [10]
UNC 51.2 56.6 5.7 7.3 44.9 63.1 39.1 53.2

86.11
CHB 43.2 47.9 5.4 4.4 48.4 46.0 46.3 34.7

Proposed
UNC 77.7 215.1 11.5 13.1 30.8 49.7 37.8 46.7

83.93
CHB 45.0 55.7 4.5 4.8 41.6 39.1 32.8 21.2

images for the proposed method. All the images have an

isotropic resolution of 0.5× 0.5× 0.5 mm3. The training set

consists of 10 CHB and 10 UNC patients. For the CHB

patient one manual annotation is provided while there are two

annotations for the UNC patients. The test set is evaluated

online with two manual annotations. We used the training set

to estimate the hyper-parameters for the λL,WM and the test

set to evaluate the performances of our method. We evaluate

this data with respect to VD, SD, TPR and FPR. The website

of the challenge also provides a score based on average values

of the four measures. We compared our method with Lesion-

TOADS [5], LST [6], the method proposed by Geremia et

al. [8], the MOPS method [16], and the RMNMS method [10].

The results are shown in Table I, the bold values represent the

best value for each metric and each dataset. All the methods

have comparable results, but our method provides the best

performance with respect to the FPR, i.e., provides the most

conservative segmentation with respect to all other state of the

art methods. In Fig. 8 we show visual results of the proposed

method for two patients from the test set. CHB15 is presented

in the first three columns and UNC03 in the last three.

C. In-House Database

The in-house database consists of data from 20 MS patients

(mean age 37.2; age range 28-55 years). The database consists

of images from two different datasets: the first one contains

5 patient data, while the second one has 15 patient data. The

lesion load of the first dataset is between 1.01-9.8 cm3, while

for the second dataset is between 0.9-24 cm3. We used the first

dataset for the hyper-parameter learning phase and the second

one for the testing phase. The studies have been approved

by the local ethic committee and all the patients provided

informed consent for the analysis of the imaging data. For

both datasets the brain images have been acquired with a

3T Siemens Trio MR System. The acquisition protocol for

both datasets consists of a 3D MPRAGE T1-w image and

a 3D FLAIR image. The data from the first dataset has a

spacing of 0.5× 0.5× 1.2 mm3 per voxel, the MPRAGE ac-

quisition parameters are TE/TR/TI=2.15/1390/800 ms and the

FLAIR acquisition parameters are TE/TR/TI=388/5000/1800

ms. The data from the second dataset has a spacing of 0.49×
0.49×1 mm3 per voxel, the MPRAGE acquisition parameters

are TE/TR/TI=2.98/1300/800 ms and the FLAIR acquisition

parameters are TE/TR/TI=394/5000/1800 ms. The manual

annotation was performed by an expert neuro-radiologist on

the FLAIR images.

We performed the testing on the in-house dataset of 15

patients and compared it against Lesion-TOADS [5] and

LST [6]. For both methods we fine-tuned the parameters to

get the best results (cf. Fig. 9). In Table II we show the

results for each of the presented measures, the bold values

represent the best value for each metric. We observe that the

proposed method performs best in terms of VD, TPR, R, D
and D0.5mm. The LST method performs best for SD and P
measures, while Lesion-TOADS has the best performances for

the FPR. In general the Dθ scores improve with respect to D
for all methods.

TABLE II
COMPARATIVE RESULTS ON THE IN-HOUSE DATASET OF 15 PATIENTS.

Method VD SD TPR FPR P R D D0.5mm

L-TOADS [5] 70.5 5.8 45.2 48.3 36.4 37.4 30.5 45.1

LST [6] 60.6 2.6 61.5 56.3 73.2 36.3 47.3 70.2

Proposed 36.5 2.8 70.4 56.2 62.4 50.5 52.4 73.2

D. Robustness of the Proposed Method

We tested the robustness of the method against increasing

levels of noise. We artificially added Rician noise to both

FLAIR and the T1-w images on three representative patients

with low, moderate and high lesion loads, respectively. The

percentage of the added noise is based on the brightest tissue,

i.e., GM for the FLAIR and WM for the T1-w. The tested

noise levels are 1%, 3%, 5%, 7%, and 9%, and we compared

it against Lesion-Toads and LST. For both methods, as well

as for the proposed method, we used the optimal parameters

estimated for these patient data without noise. In Fig. 11

the noise level versus the Dice coefficient D and D0.5 are

plotted for LST, Lesion-TOADS and the proposed method.

The performances of the proposed method are minimally

affected for noise levels 1%−5%, while for 9% of the noise

level D has a decrease of 20% in the patient data with low and

moderate lesion loads. Note that both the D and D0.5 values

for 0% of noise are the same as for 1% for all the methods. We



T1-w FLAIR Proposed T1-w FLAIR Proposed

Fig. 8. MICCAI dataset. Using the T1-w and FLAIR images, we obtain for the proposed method a lesion segmentation (shown in orange as overlay of the
FLAIR image). The first three columns show the patient CHB15, and the others the patient UNC03 of the MICCAI MS challenge test dataset.

T1-w FLAIR GT LST[6] L-TOADS[5] Proposed

✁
✁✕

Fig. 9. In-house dataset. Using T1-w and FLAIR images, we obtain different segmentations shown as overlay of the FLAIR image. The ground truth GT
(green) is shown beside the results obtained with LST (blue), Lesion-TOADS (red) and the proposed method (orange). Each row presents a different patient
and the red arrow, in the second row, points to a dirty-appearing WM region.

observe that with high lesion load all the methods seem not

to be affected by the different noise levels. In Fig. 10 visual

results with 1% and 9% noise levels for the moderate lesion

load patient data are shown.

VI. SUMMARY AND DISCUSSION

In this article we have presented a new method for 3D

lesion segmentation without using an MRI-atlas. We have

proposed a geometric model of the brain that is less sensitive

to spatial variabilities of the brain’s anatomy. Therefore, the

effect of model-overfitting is less pronounced at the interface

of neighboring brain regions. We have proposed to minimize

an energy which models the appearance of the tissues and

the topological structure of the brain like the ordering of the

different tissue layers and the connectivity of the grey matter.

While we have used Gaussian mixture models to model the

tissues appearance, it is straightforward to extend our method

to more descriptive appearance models involving SVMs, Ran-

dom Forests or convolutional neural networks. These models

would change Equation (5) and take more information such

as local textures into account.

One limitation of the proposed method is that the geometric

model is anatomically not entirely correct, since the ventricles

may also be directly adjacent to the WM and the lesions,

which we did not model. However, there are signals from

the ventricle that are not correctly suppressed. These voxels

have a high intensity value in the FLAIR image and they

can therefore be represented by the SGM-model. In practice,

our model may create a thin artifact layer of subcortical GM

around the ventricles. While the resulting labeling may not be

anatomically correct, it slightly affects the lesion segmentation.

Fig. 8 as well as the first row of Fig. 9 illustrate that the lesions

around the ventricles can be segmented with the proposed

method. Note that the method is expected to have similar

results with lesions in the corpus callosum.

The proposed method is biased towards lesions appearing

in the WM, however lesions which are appearing in the

subcortical GM can still be segmented. In our database we

did not find any lesion in the main deep GM structures (basial

ganglia, thalamii). However, in order to satisfy the geometric

constraints the method is supposed to create a “rim” of WM
around these lesions. Additionally the proposed method may

not entirely segment the dirty-appearingWM, which in FLAIR

images typically appears as a smooth hyper-intense region

in the periventricular WM, Fig. 9 (second row). Since the

boundaries of these regions are hard to detect, they may be

partially segmented as healthy WM. This limitation might be

overcome by lowering the value of λL,WM. Since the training
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Fig. 10. Segmentation with noise. In (a) the original FLAIR image with GT. We show results with 1% of additive Rician noise (b)−(d), and with 9%
(e)−(g). We compared with respect to Lesion-Toads (red, (b), (e)), LST (blue, (c), (f)), and the proposed method (orange, (d), (g)).

set did not contain extended regions of dirty-appearing-WM,

the learning process could not take this effect into account.

The proposed connectivity constraint uses a distance func-

tion based on the intensities’ gradient. It is more general

and efficient compared to the formulations proposed in the

literature [24], [25]. The connectivity prior is always imposed

as a hard constraint, but our formulation is designed for

multi-labeling segmentation while the one proposed in [25] is

meant for binary segmentation. We have shown that [25] fails

to enforce a connectivity prior in our multi-labeling setting,

whereas our method properly connects the GM (cf. Fig. 4).

Imposing this constraint, we were able to recover some lesions

that might have been misclassified as GM otherwise.

The second global constraint that we have added is the

minimum lesion size which is fixed to a diameter of 3 voxels

for the high resolution step. As shown in Fig. 5, we were able

to remove noisy signals in the WM, while extending small

lesions to the pre-determined size.

The overall energy (3) is minimized following a coarse-to-

fine approach. Based on [13], we have globally optimized our

energy on the low resolution, while ignoring the minimal size

constraint (9) for lesions. Delong and Boykov [28] showed that

combining an inclusion constraint with an exclusion constraint

results in an energy that is no longer submodular. Hence, we

could not include the exclusion constraint between L and SGM
in our framework. Instead, two false labels, F1 and F2, were

modeled (cf. Section IV-A). With the α/β-swap algorithm [12]

we have been able to repair the correct labels and to find a

feasible solution of our energy. This feasible initialization is

locally minimized with further α/β-swaps (cf. Section IV-B).

Our method is based on few parameters, the λl1,l2 values

for each neighboring tissue. These values are empirically

estimated and kept constant for all our experiments with the

exception of λWM,L. In order to make this term adaptive to

the contrast in the image, we have modeled it as being affinely

dependent on the maximum magnitude of the image gradient

(cf. Section IV-C). In the hyper-parameter learning step, for

which we can guarantee global optimality, we have estimated

the affine parameters m and b in order to obtain the best result

with respect to the training set.

The proposed method uses FLAIR and T1-w images. The

T1-w image provides more information about the contrast

between different tissue types, while the FLAIR image is more

sensitive towards lesion intensities. Additional image contrasts

can be easily added to our framework. It will only affect

the computation of the GMMs, which can still be computed

efficiently for multiple image contrasts. The size of the used

graphs on the other hand is virtually not affected by the amount

of contrasts that are available. The run time of the proposed

method is ca. 3 hours for the in-house database and ca. 7 hours

for the MICCAI data.

The lesion load of the in-house database (0.9 cm3 – 24 cm3)

showed that the proposed method is robust to mild, moderate

and severe lesion loads. Additionally, the robustness of the

method against noise has been tested for three representative

patients with low, moderate and high lesion loads, respectively.

In moderate and low lesion loads the performances of the

proposed method are slightly affected with low noise levels,

while with 9% of noise the Dice coefficient D has a drop of

20%. We observed that most of the lesions are still detected,

but the number of FP increases showing an over-segmentation,

Fig. 10(g). A possible explanation of this behavior is that the

λ values are estimated on data without artificially added noise,

therefore they are not optimal for the noisy images.

To be more robust with respect to small changes along the

borders of the segmentations, we have introduced a new metric

Dθ (cf. Section V). We tested and compared the proposed

method on the MS grand challenge [32] and on an in-house

dataset. The in-house datasets have a different image quality

and contrast compared to the challenge data, which may be

due to more modern hardware and optimized protocols. This

can be observed in the better performance of the proposed

method, of LST [6] and Lesion-TOADS [5] for the in-house

database. The results on the MS grand challenge (cf. Table I)

showed that our method is competitive with state of the art

methods and outperforms all methods with respect to the FPR.

Therefore, we can conclude that our method provides the most

cautious segmentation. The results on the in-house database

(cf. Table II) showed that the proposed method has the best

scores in most of the metrics and that in general the Dθ scores

improved with respect to D for all methods.

As future work we will use the proposed method to assess

the lesions progression in longitudinal studies.
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