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Abstract Shape distances are an important measure to guide the task of shape

classification. In this chapter we show that the right choice of shape similarity is

also important for the task of image segmentation, even at the absence of any shape

prior. To this end, we will study three different shape distances and explore how

well they can be used in a trust region framework. In particular, we explore which

distance can be easily incorporated into trust region optimization and how well these

distances work for theoretical and practical examples.

1 Shape Acquisition and Shape Distances

An important task of shape analysis is the acquisition of shapes that we want to

analyze. One classical approach is binary image segmentation that can be formu-

lated as an energy minimization approach. In other words, we define an energy

function E : S → R that evaluates how well a certain shape S ∈ S of a chosen

shape space S fits to the observed image and we are interested in the minimizer

S∗ := argminS∈S E(S) of the energy E .

The shape space S is usually equipped with a distance dist : S ×S →R
+
0 . The

literature is divided on the exact definition of a distance. Sometimes, but not always
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it is equated with a metric. In this chapter we call any positive-definite function

dist(·, ·) a distance. Such functions satisfy

dist(A,B) = 0 ⇔ A = B.

In the literature these functions are also referred to as pre-metrics. Any shape dis-

tance defines a topology of the shape space. In contrast to finite dimensional metric

spaces, these topologies are in general not equivalent to one another. In other words,

whether a shape S ∈ S is a local minimum of an energy E depends on the chosen

shape distance dist(·, ·).
In this chapter, we will explore the influence that a shape distance can have on

an image segmentation problem. This influence is only observable if E(·) cannot be

minimized globally. Note that in contrast to other image segmentation applications

like [15, 9, 7, 8], we do not use a shape distance in order to enforce a specific shape

prior. The only influence that the shape distance has on our optimization task is the

definition of a local minimum of the energy E .

This chapter is organized as follows. In Section 2, we will revisit binary image

segmentation that can be solved globally and its extension to the trust region ap-

proach [14]. In Section 3, we will present different shape distances and explore if

they can be used in a trust region framework. In Section 4, we will show how the

chosen shape distance drives the optimization process. Section 5 provides a sum-

mary of this chapter.

2 Binary Image Segmentation

Binary image segmentation is an important task in computer vision. The goal is to

distinguish the object from the background within an image. An image is a mapping

I : Ω →R
3 that assigns to every pixel x ∈ Ω of the d-dimensional connected image

domain Ω ⊂ R
d a color I(x) ∈ R

3. A binary segmentation can be modelled as a

mapping u : Ω →B where B = {0,1} encodes the object (u(x) = 1) and the back-

ground (u(x) = 0) respectively. A segmentation can also be represented as a subset

S ⊂ Ω . The relationship between S and u is described via x ∈ S ⇔ u(x) = 1. In the

following, we call the binary labeling u a segmentation and the set S a shape.

Given a shape S, one can apply different image filters to object and background

in order to emphasize the object (cf. Fig. 1). In medical image analysis, S can be

used to visualize organs or arteries [23]. Object detection tasks can be addressed

better if one works with a segmented object instead of a bounding box [12].
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Fig. 1 If the observed object is easy to distinguish from the background (left image), a per-pixel

data term works very well in practice. To remove noise from a threshold solution (central image),

an additional length term is used (right image). The resulting energy (1) can be easily optimized

via a graph cut [1] or a primal-dual approach [5].

2.1 Appearance Models

Classically, the binary image segmentation models the object and the background of

an image as a sampling from color distributions pdfobj and pdfbg. Using the notation

〈 f ,g〉 :=
∫

Ω f (x) ·g(x)dx, image segmentation can be cast as minimizing the energy

E(u) = 〈 f ,u〉 with f (x) = log

(
pdfbg(x)

pdfobj(x)

)
.

While this energy can be easily optimized via a simple thresholding method, the

optimal solution exhibits typically a high amount of noise (cf. Fig. 1). Therefore,

Mumford and Shah proposed in [18] to add the length of the segmentation’s bound-

ary as a regularizing term to the energy, resulting in

E(u) =〈 f ,u〉+ len(∂S) with S = {x ∈ Ω |u(x) = 1}. (1)

A discrete formulation approximates the length term via the Cauchy-Crofton for-

mula and minimizes the energy via a graph cut approach [1]. A continuous formu-

lation solves the problem via a primal-dual approach that can be efficiently paral-

lelized on GPUs [5]. In the following, we assume that we work in a computer envi-

ronment where (1) can be easily optimized. Whether the discrete or the continuous

formulation is used is not important for the rest of this chapter.

In general, f : Ω →R can be an arbitrary integrable function that need not to be

derived from color distributions. In the past, different attempts have been made to

model the appearance of object and background by using more information than just

the color information I(x) at a pixel x. Besides using more modalities like depth or

infra-red information, it is common to use local features like Fourier features, Gabor

features or more general texture features [24, 4]. All these approaches can be seen as

an attempt of altering the data term f in (1). In practice, these approaches improve

the segmentation. Nonetheless, these patch-based approaches become less reliable

for pixels close to the object’s boundary, since the features will then mix object and

background information. In the following, we revisit alternative approaches.
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(a) (b) (c) (d)

Fig. 2 If the object and the background contain similar appearances (a), the global optimum of (1)

does not provide a good segmentation (b). Performing a hierarchical segmentation [10] improves

the model of the scene (c) and provides a more accurate binary segmentation (d).

2.2 Multiple Models and Holistic Distributions

While the energy (1) can be applied very successfully if the appearance of object and

background vary considerably, it struggles if certain appearances appear in both, the

object and the background regions. It was therefore suggested by Delong et al. [10]

not to use one but multiple distributions for object and background (cf. Fig. 2). The

method computes a sub-labeling u0 : Ω →{1, . . . ,K} of the image domain Ω and a

binary labeling u1 : {1, . . . ,K} → B of these K sub-labels. As a result, the method

computes simultaneously a superpixel representation u0 and its binary segmentation

u1. In conjunction, these two functions induce a binary labeling u : Ω → B via

u(x) = u1 ◦ u0(x).
While the resulting minimization problem is the instance of an NP hard prob-

lem, the approximation that is obtained via α-expansion [3, 11] proved to be more

reliable than the binary segmentation driven by (1). Nonetheless, the optimization

process can take a long time and is therefore not fit for fast segmentation tasks.

In order to model the appearance of different colors without the need to find an

optimal superpixel representation, we advocate the concept of holistic histograms.

To this end, let us assume that we have pre-detected n appearances in an image. An

appearance can be based on color, texture or other features. Further, assume that we

can decide for every pixel x ∈ Ω whether this appearance is present at x. This results

in n appearance detectors fi : Ω →B. If we partition an image into disjoint areas of

the same color, each fi would represent the indicator function of one of these areas.

Nonetheless, it is also possible that different fi intersect in certain areas. This is for

example the case if we have one detector for “blue pixels” and one feature-based

detector for the image class “sky”. Given a segmentation u, we can now compute

the following histogram

h(u) = (〈 f1,u〉 , . . . ,〈 fn,u〉) ∈R
n. (2)
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Note that this histogram cannot be pre-computed on the pixel-level. It depends on

the whole segmentation u and will change during the optimization process. Since

there are also detectors that provide only probabilities about the presence of a certain

appearance, we can extend the detectors to fi : Ω →R
+
0 .

If we want to solve a segmentation task that is scale-invariant, we prefer to work

with distributions, i.e., normalized histograms, instead of histograms. Given the ap-

pearance detectors fi as above, we obtain the holistic distribution

p(u) =


 〈 f1,u〉〈

∑n
j=1 f j ,u

〉 , . . . , 〈 fn,u〉〈
∑n

j=1 f j,u
〉


 ∈R

n. (3)

If a prior distribution q ∈R
n is learned, we would like to use a distribution distance

to penalize the deviation of p(u) from the prior q. Combining the Bhattacharyya

distance between the distributions with a length term results in the energy

E(u) =− log




n

∑
i=1

√√√√
qi · 〈 fi,u〉〈
∑n

j=1 f j ,u
〉


+ len(u) (4)

that we want to minimize.

2.3 Submodular and Convex Relaxations

Recently, Tang et al. [25] proposed an unsupervised segmentation approach that

rewards the L1-distance between the object’s histogram h(u) and the background’s

histogram h(1−u). Since this results in the minimization of a submodular energy, it

can be solved globally and its solution provides for a much better segmentation than

the optimization of (1). Nonetheless, it cannot be used in order to solve (4), which

uses distributions instead of histograms.

Nieuwenhuis et al. [19] addressed a problem related to (4). Instead of a binary

segmentation they addressed a multi-region segmentation, where ratio constraints

for each region are encouraged. They addressed this problem by computing the

global optimum of an approximation of the original energy with respect to label-

ings ui : Ω → [0,1]. Since the threshold theorem [6] is not satisfied for the convex

function, it cannot be guaranteed that the derived segmentations ûi : Ω →B is even

a local optimum of the approximation.

To guarantee local optimality, Gorelick et al. [14] proposed a method that com-

bines the trust region framework with a class of energies that also includes (4). Since

we want to explore the relationship between local optimization methods and shape

distances, we will focus on the approximation scheme of [14]. After revisiting it in

Section 2.4, in Section 3, we will study shape distances that define different trust

regions and thus, compute different local minima.
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Fig. 3 Left: For a complex energy E one can use an approximation Ẽ that is exact at a point u0

(white dot). Middle: The global minimizer u∗ (red dot) of Ẽ will in general not improve the value

of the original energy E. Right: Trust region approaches trust Ẽ in a small vicinity of u0 (colored

circle). For a sufficient small vicinity, the optimizer û (yellow dot) of (6) improves the energy E.

2.4 Trust Region

Trust region methods are used to find a (local) minimum of a function E . Naturally,

these methods are only used if it is difficult to find the global optimum of the energy

E . The idea is to use an approximation Ẽ of E that is exact at a certain feasible

solution u0. If the set of all feasible solutions is equipped with a distance function

dist(·, ·), the trust region approach iteratively solves the trust region sub-problem

argmin
dist(u0,u)<d

Ẽ(u). (5)

If the solution û of this problem reduces the actual energy considerably, i.e.,

E(û)≤ αE(u0) with 0 < α < 1,

û is accepted as a new approximate solution u0 (cf. Fig. 3). Otherwise the region in

which we trust the approximation is reduced, i.e., d is multiplied with a factor β ,

0 < β < 1. These steps are repeated until the distance d is small enough.

Since we have to minimize the trust region sub-problem (5) globally, we like

to use approximations Ẽ that are easy to optimize. If E is differentiable it can be

approximated by a linear Taylor approximation. In the case that the space of feasi-

ble solutions is a linear space R
N equipped with the canonical metric dist(u0,u) =

‖u0 − u‖, a solution of (5) is

argmin
‖u−u0‖<d

E(u0)+
〈
E ′(u0),u− u0

〉
= u0 − d ·

E ′(u0)

‖E ′(u0)‖
.

Therefore, the trust region approach can be understood as a generalization of the

normalized gradient descent approach. In practice, second order approximations of

E are used [20].
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Gorelick et al. [14] used functions E that can be described as the sum of a dif-

ferentiable function E1 and a length term. The approximation Ẽ only uses a linear

approximation for E1. The length term is not approximated at all, resulting in:

E(u) = E1(u)+ len(u) Ẽ(u) = E1(u0)+
〈
E ′

1(u0),u− u0

〉
+ len(u)

To solve the trust region sub-problem (5), a Lagrangian formulation1

argmin
u

〈
E ′

1(u0),u
〉
+ len(u)+λ dist(u0,u) (6)

was used and a reciprocal relationship between the Lagrangian factor λ and the

distance d was exploited. For more details we refer to [14].

Remark 1. Note that in contrast to a gradient descent approach, the length term

need not to be approximated, since we can optimize energies of the form (1) that

also include length terms. If we also approximated the length term, the resulting

sub-problem would include a curvature motion as explored in the level set frame-

work [21]. It was shown in [13] that not approximating the length term is beneficial

in practice. The resulting method is faster and possesses fewer local minima than

the level set approach of [16].

Remark 2. The Lagrangian formulation (6) uses the current solution u0 as a prior.

If we want to trust Ẽ in a smaller vicinity, λ is automatically increased and the

prior has a stronger influence. This results in a process where the global optimum

of (6) is pushed towards u0 with increasing λ . Note that it is not necessary to tune

the parameter λ to the application. λ is instead automatically adapted by the trust

region framework. This adaptation is driven by the original energy E .

Since the prior in (6) depends on the distance dist(·, ·), we explore in the next

section different distance functions for shapes. These distances define different sub-

problems (6) and thus different local minima of E . In order to globally optimize (6),

we focus on shape distance functions that are affine in u. In these cases, the trust

region sub-problem is of the form (1), which we can easily optimize.

3 Shapes and Shape Distances

In order to avoid shapes S ⊂ Ω that can only be created by the set-theoretical axiom

of choice or sets that are null-sets in the Lebesguean sense, we want to focus on

shapes S that are open sets. Since we will also be interested in the boundary ∂S of a

shape S, we want to exclude those shapes whose boundaries are empty. With

S := {S ⊂ Ω |S is open and ∂S 6= /0} (7)

1 Since we are only interested in the minimizer, we removed constant terms from the energy.
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1S sidS dfS sdfS

Fig. 4 For a shape S ∈ S , we use different implicit representations, the indicator function 1S, the

signed indicator function sidS, the distance function dfS and the signed distance function sdfS.

we denote the set of all those shapes. Since the boundary ∂S := S∩Sc is the intersec-

tion of the closure of S and the closure of its complement Sc, only the empty set and

the whole domain Ω are exempted from the shape space S . This is a consequence

of Ω being connected.

In order to equip the shape space S with a distance, we have two choices. We

can either define a distance dist(S0,S1) with respect to the whole shapes Si or with

respect to their boundaries ∂Si. In the first case we speak of region-based distances

and in the latter case we speak of contour-based distances. While contour-based

distances proved to be very descriptive [17], it is difficult to incorporate them into

image segmentation tasks. The goal of this section is to overcome this limitation of

contour-based distances by approximating them in a regional sense.

To study relationships between S and ∂S, we use the following representations.

Definition 1. Given a shape S ∈ S , we denote the indicator function, the signed

indicator function, the distance function and the signed distance function (cf. Fig. 4)

as 1S, sidS, dfS, sdfS : Ω →R and define them via

1S(x) :=

{
1 , x ∈ S

0 , x 6∈ S
sidS(x) :=

{
−1 , x ∈ S

+1 , x 6∈ S

dfS(x) :=min
s∈∂S

‖x− s‖ sdfS(x) :=sidS(x) ·dfS(x).

In Section 3.1 we will study the Hamming distance distH(·, ·) and show its restric-

tions for the trust region sub-problem (6). In Section 3.2, we will study a contour-

based distance distL2(·, ·) and explore its regional approximation dist2(·, ·).
In particular, we will show that both, distH(u0,u) and dist2(u0,u) are affine in u

and can therefore be easily incorporated into (6). distL2(u0,u) on the other hand is

not affine in u and cannot be used in the trust region framework. For that reason, we

have to approximate it with the distance dist2(u0,u) that is affine in u.



Shape Distances for Binary Image Segmentation 9

Shapes A,B ∈ S Hamming distance sidA

Fig. 5 The Hamming distance distH (A,B) of two shapes A,B ∈ S is the area of its symmetric

difference. Using the signed indicator function sidA, this distance becomes affine in B (cf. (9)).

3.1 Regional Hamming Distance and its Restrictions

The Hamming distance of two shapes A,B ∈S is defined as the area of its symmet-

ric difference A △ B := (A\B)⊔ (B\A):

distH(A,B) :=area(A △ B). (8)

Using the signed indicator function sidA, we can rewrite the Hamming distance as

distH(A,B) =

∫

B
sidA(x)dx−

∫

A
sidA(x)dx. (9)

To see that Equations (8) and (9) describe the same function, note that

∫

B
sidA(x)dx−

∫

A
sidA(x)dx =

∫
(B\A)
⊔(B∩A)

sidA(x)dx−
∫

(A\B)
⊔(B∩A)

sidA(x)dx

=
∫

(B\A)
1dx−

∫

(A\B)
(−1)dx = area(A △ B) .

The advantage of the formulation (9) is that it can be integrated into the trust

region sub-problem (6). Using the notation 〈 f ,S〉 := 〈 f ,1S〉=
∫

S f (x)dx, we obtain

distH(A,B) = 〈sidA,B〉+C, C :=−〈sidA,A〉 ,

which is affine in B. We will show in the following that the Hamming distance is

a shape distance that is disadvantageous for shape prior-based image segmentation.

For this reason we want to study different shape distances.

Example 1. Let us consider two different shapes A,B ∈ S and the energy function

E(S) := 〈sidA,S〉. Its unique minimizer is S∗ = A. Adding a weighted shape prior

with respect to B leads to the energy
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Eλ (S) =(1−λ ) ·E(S)+λ ·distH(B,S)

=〈(1−λ )sidA+λ sidB,S〉+λC, C :=−〈sidB,B〉 .

If we denote with S∗λ a global minimum of Eλ (S), we obtain a mapping m : λ 7→
S∗λ that starts at S∗0 = A and ends at S∗1 = B. One major disadvantage of the used

Hamming distance is that m is not a continuous morphing (cf. 1st plot of Fig. 6).

Theorem 1. If we define a mapping m : [0,1]→ S as above, the following holds:

m(λ ) = A, if 0 ≤ λ <
1

2

m(λ ) = B, if
1

2
< λ ≤ 1

Proof. A minimizer of Eλ is easily found by thresholding (1−λ )sidA+λ sidB at 0.

The following observation

(1−λ )sidA(x)+λ sidB(x) =





−1+ 2λ , if x ∈ A\B

1− 2λ , if x ∈ B\A

−1 , if x ∈ A∩B

1 , if x 6∈ A⊔B

proves the theorem. �

Because of this theorem, we cannot use distH in (6) in order to push the segmen-

tation towards a specific shape. As mentioned in Remark 2, continuous morphings

are essential for a successful trust region computation. With the Hamming distance

we can only encode a hard constraint. In order to handle soft constraints, we will

explore next a contour-based distance and its region-based approximation.

3.2 L2 Contour Distance and its Regional Approximation

An L2 distance between two shapes A,B ∈ S can be formulated as

distL2(A,B) :=

(∫

∂B
min
x∈∂A

‖x− s‖2
ds

) 1
2

. (10)

This distance only considers the shapes’ boundaries. The interior of the shapes is

completely ignored. In order to simplify the study of this distance, we will only

consider concentric balls Bρ of radius ρ > 0. For these examples, the distance can

be computed analytically. Given two concentric balls of radius r and R, we obtain

distL2(Br,BR)
2 =

∫

∂BR

(R− r)2 ds = 2πR · (R− r)2.
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Fig. 6 Image: As shapes we consider concentric balls Bρ of radius ρ . Given the radii 0 < r ≤ R,

we consider an energy Eλ (ρ) = (1−λ )
〈
sidBR

,Bρ

〉
+λ dist(Br,Bρ ). The first term favors ρ = R

and the second term favors ρ = r. The minimizer ρ∗ of Eλ depends on λ . Plots: Using distH leads

to a non-continuous function ρ∗(λ ). For distL2 and dist2, ρ∗(λ ) becomes continuous.

The distance distL2(·, ·) is not symmetric and thus not a metric. Analogously to

Section 3.1, we want to study the influence that a dist2
L2-based shape prior has on

image segmentation.

Example 2. Let us consider the radii 0 < r ≤ R. The unique minimizer of the energy

E(ρ) =
〈
sidBR

,Bρ

〉
is obtained for ρ∗ = R. Adding Br as a shape prior, results in

the following energy

Eλ (ρ) =(1−λ )
〈
sidBR

,Bρ

〉
+λ distL2(Bρ ,Br)

=(1−λ )
〈
sidBR

,Bρ

〉
+λ

∫

∂Br

min
x∈∂Bρ

‖x− s‖2
ds

=(1−λ )
〈
sidBR

,Bρ

〉
+λ ·2πr(ρ − r)2

=

{
λ ·2πr(ρ − r)2 − (1−λ )πρ2 , if ρ ≤ R

λ ·2πr(ρ − r)2 +(1−λ )π(ρ2− 2R2) , if ρ > R

The global minimum of Eλ is (cf. 2nd plot of Fig. 6)

ρ∗(λ ) =

{
R , λ ≤ 1

2r+1

min
(

r+ (1−λ )r
2λ r−(1−λ )

,R
)

, λ > 1
2r+1

.

First of all, this means that ρ∗ continuously changes from ρ∗(0)=R to ρ∗(1)= r.

We are therefore able to continuously push the segmentation to a certain shape prior.

Secondly, there is a small range for λ where the shape prior is ignored. This means

that a strong data term always overrules the shape prior. Both of these properties

are important for the trust region sub-problem (6). A major disadvantage of dist2
L2

over the Hamming distance is the fact that it cannot be incorporated into (6) in such

a way that results in an energy of the form (1). This is because dist2
L2(A,B) is not

affine in B. Therefore, we seek in the following an affine approximation of dist2
L2 .

In order to compute dist2
L2(A,B), an explicit matching ξ : ∂B → ∂A between the

shapes’ boundaries is computed, where ξ (s) := argminx∈∂A ‖x− s‖. If we denote

the straight line from ξ (s) to s as
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ℓs : [0,1]→ Ω ℓs(t) := (1− t) ·ξ (s)+ t · s,

we observe dfA(ℓs(t)) = t · ‖ξ (s)− s‖. This leads to

distL2(A,B)2 =

∫

∂B
min
x∈∂A

‖x− s‖2
ds =

∫

∂B
‖ξ (s)− s‖2

ds

=
∫

∂B

∫ 1

0
2t ‖ξ (s)− s‖2

dt ds

=
∫

∂B

∫ 1

0
2dfA(ℓs(t)) ·

∥∥ℓ′s(t)
∥∥ dt ds

=

∫

∂B

∫

ℓs

2dfA(x)dxds

In the last equation, we rewrote the equation in means of the line integral evaluated

along the line ℓs, which still depends on ξ (s). Since ξ is in general difficult to

compute, we want to replace the integration domain (s, t) 7→ (1− t) ·ξ (s)+ t · s with

a simpler domain. Note that if both A and B are concentric circles, the integration

domain is exactly A △ B. Therefore, we will approximate dist2
L2 via

dist2(A,B) :=

∫

B\A
2dfA(x)dx+

∫

A\B
2dfA(x)dx

=

∫

B\(B∩A)
2sdfA(x)dx−

∫

A\(B∩A)
2sdfA(x)dx

=

∫

B
2sdfA(x)dx−

∫

A
2sdfA(x)dx (11)

This distance can be easily integrated into the sub-problem (6), because it is affine

in B, similar to the Hamming distance formulation (9). The main difference between

these two distances is that instead of sidA we use the signed distance function sdfA.

Note that in general, dist2 does not approximate dist2
L2 very well. First of all,

the integration domain (s, t) 7→ (1− t) · ξ (s)+ t · s does not always coincide with

A △ B. Even if it does, the explicit parameterization of the integration domain is

partly ignored. Only the variation in the direction of ℓs is considered correctly. As a

result, the distance between two concentric balls becomes

dist2(Br,BR) =
∫

BR

2(|x|− r)dx−
∫

Br

2(|x|− r)dx = 4π

(
R3

3
−

R2r

2
+

r3

6

)

=2πR(R− r)2 ·

(
1+

r−R

3R

)
.

The scaling factor 1+ r−R
3R

is the result of the reparametrization and is only negligible

if |R− r|≪ r. Only in that sense can we speak of dist2 as an approximation of dist2
L2 .

Note that even for balls, dist2 is only a zeroth order approximation for dist2
L2 .
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In order to see whether dist2 is as useful for shape prior-based image segmenta-

tion as dist2
L2 , let us take another look at Example 2 of Page 11. If we replace dist2

L2

with dist2, the energy Eλ becomes

Eλ (ρ) =(1−λ )
〈
sidBR

,Bρ

〉
+λ dist2(Br,Bρ)

=(1−λ )
∫

Bρ

sidBR
(x)dx+

2λ π

3

(
2ρ3 − 3ρ2r+ r3

)

=

{
2λ π

3

(
2ρ3 − 3ρ2r+ r3

)
− (1−λ )πρ2 , if ρ ≤ R

2λ π
3

(
2ρ3 − 3ρ2r+ r3

)
+(1−λ )π(ρ2− 2R2) , if ρ > R

and its global optimum is realized at (cf. 3rd plot of Fig. 6)

ρ∗(λ ) =

{
R , λ ≤ 1

1+2(R−r)

r+ 1−λ
2λ , λ > 1

1+2(R−r)
.

As for dist2
L2 , ρ∗ starts at ρ∗(0) = R and changes continuously to ρ∗(1) = r. It also

remains at the initial solution ρ∗ =R for a certain range of λ . Therefore, we consider

dist2 as a good compromise between distH and dist2
L2 to be used in the trust region

framework as proposed in [14].

To use a shape distance that depends on the shapes’ signed distance function is

not a new concept. Rousson and Paragios [22] used the distance

distsdf(A,B) =

(∫

Ω
(sdfA(x)− sdfB(x))

2 dx

) 1
2

to penalize shape dissimilarity. distsdf depends in contrast to dist2 on the size of

the image domain Ω , e.g., distsdf(Br,BR) = (R− r)2 area(Ω). It is therefore not a

general, domain-independent shape measure. In addition, we cannot use distsdf as

shape distance for the trust region sub-problem, because it depends on computing

the signed distance function of both shapes. As a result, distsdf(A,S) is not affine in

S. Therefore, the sub-problem (6) does not become an energy of the form (1).

The distance dist2 is very different in that respect. If we use dist2(A, ·) in (6), A is

known and sdfA can be pre-computed. This makes dist2 much easier to handle than

distsdf. To our knowledge, dist2 was first applied to a computer vision application

by Boykov et al. in [2].

4 Experiments

In the following we present two applications of the trust region method. To solve the

subproblem (6) we use the primal-dual method of [5]. Since only a few iterations

are necessary, we will present most of the iterations. By doing so, we substantiate

the theoretical results in Section 3 with practical examples.
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u
(k)
0 E ′ (u0) E ′+λ · sdfu0

u
(k)
0 E ′ (u0) E ′+λ · sdfu0

k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Fig. 7 In this toy example we explore the volume constraint (〈1,u〉−V )2, where V = 1
2
|Ω | rep-

resents 50% of the image domain’s area. Using a man shaped initialization (1st image of top row),

the method computes in a few iterations a circle (last image of last row). Each row represents two

iterations of the trust region method. 1st,4th column: At each iteration k, we start with a current

solution u
(k)
0 . 2nd,5th column: The derivative E ′(u0) could define a gradient descent. The global

optimum of this energy is a trivial solution (Ω or /0). 3rd,6th column: E ′(u0)+λ · sdfu0
is the data

term for the Lagrangian formulation (6) of the trust region approach [14]. λ is chosen automatically

by the trust region method. 4th,1st column: û is the global optimizer of the Lagrangian trust region

sub-problem. It becomes u0 of the next iteration. Note that in the beginning we can experience big

jumps with respect to the segmentation. Nonetheless, the energy decreases in each iteration until

we reach a local minimum of the original energy, which for this toy example is a global optimum.

4.1 Volume Constraint

We consider the energy EVol(u) = (〈1,u〉−V)2 + len(u), which penalizes the devi-

ation of the volume 〈1,u〉 from the target volume V > 0. The additional length term

len(u) guarantees that the global minimum u∗ of EVol describes a circle of radius r

that satisfies 2π · r3 − 2Vr+ 1 = 0. For this toy example, we set the target volume

V to cover 50% of the image domain Ω . In Fig. 7 we show how the trust region

method finds the global optimum in just a few iterations. While the shape from one
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iteration to the next changes drastically in the beginning, the energy EVol decreases

in each iteration and moves the shape to the global optimum of the energy.

Besides the energy, we also show the derivative E ′ of the regional energy

E(u) = (〈1,u〉−V)2
. If the current solution uk

0 is smaller than the target volume,

E ′(uk
0) is constantly negative (blue or cyan in Fig. 7) in the image domain and

encourages larger segmentations. If on the other hand uk
0 is larger than the target

volume, E ′(uk
0) is constantly positive (orange and yellow in Fig. 7) and encourages

smaller segmentations. Without the distance constraint in (6), the approximation

E ′(u)+ len(u) would either choose /0 or Ω as u
(k+1)
0 . Together with the scaled signed

distance function that originates from the dist2 distance, we are able to smoothly

change the shape in a way that the overall energy EVol decreases.

4.2 Distribution Constraint

We consider the energy function (4) as introduced in Section 2.2. For this applica-

tion, we assume knowledge about the object and describe it with 512 color models

(8 per color channel). The results are presented in Fig. 8. As in the previous exper-

iment, the data term of the approximation Ẽ is in general not very informative (cf.

2nd column of Fig. 7). Only in combination with the distance dist2 do we obtain a

data term (cf. 3rd column of Fig. 8) that helps to improve the segmentation (cf. 4th

column of Fig. 8).

5 Summary

In this chapter we demonstrated that the choice of a shape distance influences the

result for image segmentation applications, even at the absence of any shape prior.

The importance of the chosen shape distance becomes apparent if we want to deal

with local optimization. In particular, we analyzed the behavior with respect to three

different distances in the context of the fast trust region image segmentation frame-

work of [14]. In order to obtain good segmentation results, we advocate the use of

the distance dist2.
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