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Abstract
We study an algorithmic framework for computing an elastic orientation-preserving matching of non-rigid 3D
shapes. We outline an Integer Linear Programming formulation whose relaxed version can be minimized globally
in polynomial time. Because of the high number of optimization variables, the key algorithmic challenge lies in
efficiently solving the linear program. We present a performance analysis of several Linear Programming algo-
rithms on our problem. Furthermore, we introduce a multiresolution strategy which allows the matching of higher
resolution models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

The registration of three-dimensional shapes is a fundamen-
tal problem in geometry processing. The abundance of such
shapes – obtained from Laser scanners, image-based recon-
struction methods or RGB-D cameras – gives rise to an in-
creasing demand for efficient and unsupervised methods to
compute optimal matchings – in order to relate shapes and
their parts, in order to fuse different partial scans of a single
3D object, in order to transfer semantics from one shape to
another, in order to quantify similarity of shapes and in order
to automatically interpolate two different shapes.

In the last two decades, 3D shape matching has received
considerable attention. The most classical problem studied
in this context is the alignment of rigid shapes where one
seeks for the Euclidean motion which moves one shape
as close as possible towards the other one in the sense of
the Hausdorff distance. Typically, this problem is handled
by variants of the Iterative Closest Point (ICP) algorithm
[BM92, GMGP05].

In non-rigid shape matching, the goal is to detect mean-
ingful correspondences between two different poses of a
shape or even between two different objects (as in Figure 1).
Usually, this is formulated as an optimization problem over
the manifold of surface mappings or diffeomorphisms sub-
ject to appropriate constraints. Because in general, such a

Figure 1: We compute orientation-preserving matchings
of three-dimensional shapes by minimizing the elastic thin-
shell energy required to deform one shape into the other one.
The ILP formulation leads to solutions which are indepen-
dent of the initialization. A multiresolution approach allows
for matchings at reasonably high resolution, visualized here
by Voronoi cells in successive zoom-ins.
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manifold of surface mappings is infinite-dimensional, non-
rigid shape matching is a much more challenging prob-
lem than rigid shape matching which deals with the six-
dimensional group of Euclidean motions.

By assuming that the deformation preserves geodesic
distances, which is approximately true for pose changes,
the search space for non-rigid matchings can be made
much smaller [OMMG10]. Without this restriction, Mé-
moli and Sapiro [MS05] proposed the use of the Gromov–
Hausdorff framework. The paradigm is to search for the cor-
respondence with the least distortion of geodesic distances.
An efficient algorithm for computing such a minimum-
distortion correspondence was proposed by Bronstein et
al. [BBK06]. More recently, the geodesic distance in the
Gromov–Hausdorff framework was replaced by the diffu-
sion distance [BBK∗10].

While in the minimum-distortion approach only stretch-
ing and strain are penalized, other more physics-oriented
approaches also take into account bending – thereby allow-
ing for example to energetically distinguish a straight fin-
ger from a bent finger. The resulting deformation energy is
a thin-shell energy [GHDS03]. Such an approach has been
applied to the matching of disk-type surfaces by Litke et
al. [LDRS05]. Wirth et al. [WBRS09] use a similar idea,
applying continuum mechanics to volumetric shapes.

Due to its mathematical beauty and simplicity, confor-
mal geometry has been studied excessively in geometry pro-
cessing. The works [WGH∗05, ZZW∗08, LWT∗10] propose
shape matching approaches which exploit this theory.

Inspired by the work of Lafon [Laf04] on data analysis
based on diffusion distances, recently the eigenfunctions of
the Laplace–Beltrami operator have gained a lot of attention
in shape analyis [Lév06]. Shape matching based on these
techniques has been proposed by Mateus et al. [MHK∗08]
and by Jain et al. [JZvK07].

All methods for non-rigid shape registration mentioned so
far have in common that they use local optimization methods
for a non-convex optimization problem. As a result, the de-
tected correspondences depend heavily on the initialization
(possibly improved with a coarse-to-fine strategy) and they
could in principle be arbitrarily bad.

Recently, two methods have been proposed which in-
corporate methods from global optimization. Zeng et al.
[ZWW∗10] propose a graph matching formulation with
third order energy terms. The resulting energy is approxi-
mately minimized using the dual decomposition relaxation
scheme proposed by Torresani et al. [TKR08]. This approach
has the drawback that all triples of possible assignments are
taken into account. This results in a very high complexity
and allows only the matching of a few feature points which
is post-processed with a local method.

On the other hand, in their remarkable paper [LD09], Lip-
man and Daubechies introduce a surface distance for disk-

type surfaces which builds on the framework of Optimal
Mass Transport. The transportation cost is constructed using
conformal geometry. The authors are able to prove that their
similarity measure satisfies all axioms of a distance func-
tion. The computation of this distance comes down to solv-
ing a linear assignment problem which can be done globally
optimally in polynomial time. However, no spatial regular-
ization is included in this framework so that the resulting
assignments cannot be used as reliable shape matchings.

In this paper, we study a framework for non-rigid three-
dimensional shape matching which was recently introduced
in [WSSC11]. Rather than matching points to points as in all
previous works, this approach brings small surface patches
in correspondence. This allows to compute matchings which
are geometrically consistent in the sense that a discrete con-
tinuity property is satisfied and orientations are preserved.
This property appears indispensable for a meaningful com-
parison of the boundary surfaces of three-dimensional ob-
jects.

Computationally, our approach is formulated as an Integer
Linear Program (ILP) whose relaxed version can be solved
globally optimally in polynomial time. Since the number of
variables grows quadratically with the number of vertices of
the shapes, algorithmic efficiency is an important issue. For
this reason, we investigate the performance of several Linear
Programming (LP) algorithms on our problem. Moreover,
we propose a multiscale framework in order to achieve shape
matchings in higher resolutions.

As for the energy model, we follow the physical approach
as described above, using an elastic, non-linear thin-shell en-
ergy. However, the proposed framework allows for any en-
ergy of first order consisting of a data term of order zero and
a first-order regularizer involving the Jacobian of the surface
map. We show that the performance of our algorithm can be
boosted with the incorporation of a feature descriptor.

Compared to [WSSC11], our main contributions are sum-
marized as follows:

• We discuss theoretical aspects of the shape matching
framework and we prove that it computes discretely con-
tinuous, orientation preserving correspondences.

• We evaluate the performance of several LP algorithms for
efficiently determining the globally optimal solution of
the relaxed ILP.

• We introduce a multiresolution framework which allows
to efficiently process shapes in higher resolution.

• We show that the incorporation of a feature descriptor fur-
ther enhances the performance of our algorithm.

2. Integer Linear Program Formulation

In this section we present our ILP formulation for geometri-
cally consistent shape matching. The key idea is to represent
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a surface map by its graph surface. This idea appeared pre-
viously in the context of 2D shape matching in the work of
Schmidt et al. [SFC07].

In Section 2.1 we will quickly review the continuous the-
ory of diffeomorphisms and their graph surfaces and we will
give the continuous version of the thin-shell energy used in
this work. The discrete version of graph surfaces will be de-
rived in the sequel. In Section 2.2 we will introduce product
triangles which are the building blocks of discrete graph sur-
faces. Product triangles are glued to discrete graph surfaces
in Section 2.3. Finally, we elaborate on the ILP formulation
for shape matching in Section 2.4.

2.1. Diffeomorphisms and their Graphs

Let X ,Y ⊂ R3 be two closed, oriented differentiable sur-
faces. We formulate shape matching between X and Y as
an optimization problem in the group of orientation preserv-
ing diffeomorphisms Diff+(X ,Y ). Recall that a diffeomor-
phism between X and Y is an invertible, differentiable map
ϕ : X → Y whose inverse ϕ

−1 : Y → X is again differen-
tiable. We argue that orientation preserving diffeomorphisms
are the correct search space for registrations of boundary
surfaces of volumetric three-dimensional shapes. Indeed, a
deformation of one volumetric three-dimensional shape into
another one induces an orientation-preserving diffeomor-
phism of their boundary surfaces. Vice versa, each such dif-
feomorphism can be obtained as the boundary map induced
by a volumetric shape deformation.

The energy we impose on diffeomorphisms is a variant of
Koiter’s thin-shell energy [Koi66]. It consists of a membrane
term penalizing stretching and compression and of a bending
term. For a diffeomorphism ϕ : X → Y we set

E(ϕ) =
∫

X
(trgX E)+µ trgX (E

2)︸ ︷︷ ︸
Emem

+λ

∫
X
(HX (x)−HY (ϕ(x))

2︸ ︷︷ ︸
Ebend

(1)

where HX and HY denote the mean curvature of the two
shapes X and Y resp., λ and µ are parameters that model
the material’s bending and stretching properties and the La-
grange strain tensor E measures the difference between the
local metrics on both shapes. This tensor is defined as E =
ϕ
∗gY − gX where gX is the Riemannian metric on X and

ϕ
∗gY is the pullback of the metric gY on Y (cf. [DC92]).

Since in shape matching there is no reason to prefer one
shape to the other one, we use a symmetric problem formu-
lation. The resulting optimization problem we aim to solve
is

ϕ
∗ = argminϕ∈Diff+(X ,Y ) E(ϕ)+E(ϕ−1). (2)

In our computational approach, rather than searching for

the diffeomorphism ϕ itself, we search for its graph surface
Γϕ = {(x,ϕ(x)) ∈ X ×Y | x ∈ X} ⊂ X ×Y . This graph sur-
face has the following properties

(i) Γϕ is a differentiable, connected, closed surface in the
product space X×Y .

(ii) The natural projections πX : Γϕ→ X and πY : Γϕ→Y are
both diffeomorphisms.

(iii) The two orientations which Γϕ naturally inherits from X
and Y coincide.

Vice versa, any surface Γ ⊂ X ×Y satisfying conditions
(i),(ii) and (iii) is the graph surface of a diffeomorphism be-
tween X and Y . In the following we work out how to define
discrete versions of (i),(ii) and (iii).

2.2. Product Triangles

In this subsection we will introduce the set of product trian-
gles which are the building blocks of discrete graph surfaces.
Each such product triangle can be interpreted as setting into
correspondence a small surface patch on one shape with a
small surface patch on the other shape. Before defining the
product triangles, we have to discuss degenerate edges and
triangles of a mesh. These will enable our matching frame-
work to cope with stretching and compression.

Let X be an oriented, connected triangle mesh. Denote by
VX the set of vertices of X . We fix orientations for edges and
for triangles. Since edges do not have a natural orientation,
we arbitrarily choose one. The set of oriented edges is de-
noted by EX . Thus, if two vertices v1,v2 ∈VX are connected
by an edge, then either ( v1

v2 ) ∈ EX or ( v2
v1 ) =−( v1

v2 ) ∈ EX . By
assumption, triangles do have a natural orientation. Let FX
be the set of oriented triangles. If vertices a1,a2,a3 build an
oriented triangle, then

(a1
a2
a3

)
=
(a2

a3
a1

)
=
(a3

a1
a2

)
∈ FX .

We extend the set of edges EX by degenerate edges

EX = EX ∪{(a
a) | a ∈VX} . (3)

Similarly, the set of triangles FX is extended by degenerate
triangles

FX = FX ∪
{(a1

a2
a2

) ∣∣∣ a1,a2 ∈VX , ±(a1
a2 ) ∈ EX

}
. (4)

Note that degenerate triangles can consist of two vertices or
of only one vertex.

Let now Y = (VY ,EY ,FY ) be a second oriented, connected
triangle mesh and define EY , FY analogously. Then the set
of product edges is defined as

E = EX ×EY . (5)

The set of oriented product triangles is defined as

F =


(

a1 b1
a2 b2
a3 b3

) ∣∣∣∣∣∣∣∣∣∣
fa =

(a1
a2
a3

)
∈ FX ,

fb =
(

b1
b2
b3

)
∈ FY ,

fa or fb non-degenerate

/∼. (6)
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where∼ is the equivalence relation generated by
(

a1 b1
a2 b2
a3 b3

)
∼(

a2 b2
a3 b3
a1 b1

)
∼
(

a3 b3
a1 b1
a2 b2

)
. For shape matching, an activated prod-

uct triangle
(

a1 b1
a2 b2
a3 b3

)
∈ F is interpreted as setting into corre-

spondence triangle fa on X with triangle fb on Y in such a
way that vertex ai ∈VX is set in correspondence with vertex
bi ∈VY .

2.3. Discrete Graph Surfaces

In the previous subsection we introduced product triangles as
the building blocks of discrete graph surfaces. In this section
we will see how to glue product triangles to discrete graph
surfaces. First we define the set of discrete product surfaces
which will contain the set of discrete graph surfaces.

Definition 1 A discrete product surface Γ is a subset Γ ⊂
F .

We now formulate discrete versions of conditions (i), (ii) and
(iii).

Discrete Version of (i). Here we present the discrete ver-
sion of the closedness constraint. For shape matching, this
constraint has the interpretation that matchings of triangular
patches are continued consistently across edges. To formu-
late this we need to introduce the boundary operator map-
ping product triangles in F to product edges in E. This op-
erator is reminiscent of the boundary operator for triangle
meshes [DHLM05].

As done in Section 2.2 for edges on X and Y , we fix ar-
bitrary orientations of the product edges E. Given a prod-
uct edge e =

(
a1 b1
a2 b2

)
, we denote by v(e) ∈ {−1,0,1}|E| the

vector with entry 1 in the e-th component if e is positively
oriented and−1 if it is negatively oriented and with all other
entries equal to 0.

Definition 2 We define the boundary operator mapping
product triangles to their boundaries

∂ : F → {−1,0,1}|E|(
a1 b1
a2 b2
a3 b3

)
7→ v

(
a1 b1
a2 b2

)
+ v
(

a2 b2
a3 b3

)
+ v
(

a3 b3
a1 b1

)
.

(7)

The boundary operator is extended linearly to a map ∂ :
[0,1]|F|→ Z|E|.
A discrete product surface Γ ⊂ F is called closed if it satis-
fies ∂(Γ) = 0|E|, where 0|E| is the all-zeros vector of length
|E|.

Discrete Version of (ii). Now we formulate the discrete
analog of bijective projections. We require that each non-
degenerate triangle on X or Y has a unique (possibly degen-
erate) correspondence partner on the other mesh. To formal-
ize this, define for fa ∈ FX the vector vX ( fa) ∈ {0,1}|FX |

as the indicator vector of fa which has all entries equal
to 0 but the fa-th one which is 1. For fb ∈ FY , the vector
v( fb) ∈ {0,1}|FY | is defined analogously.

Definition 3 The projection πX : F → {0,1}|FX | is defined
by

πX ( fa, fb) =

{
v( fa) if fa is non-deg.
0|FX ] else.

(8)

The projection πY : F →{0,1}|FY | is defined analogously.
A discrete product surface Γ ⊂ F satisfies the projection
constraint if πX (Γ) = 1|FX | and πY (Γ) = 1|FY | where 1n is
the vector of length n with all entries equal to one.

Discrete Version of (iii). There is no need for imposing a
further constraint in order to guarantee orientation preserv-
ing matchings because by definition F only contains patches
which induce such correspondences.

For computations, discrete product surfaces are repre-
sented by their indicator vectors Γ ∈ {0,1}|F|. Then, the
boundary operator can be expressed by a (sparse) matrix of
size |E|×|F| and the projection operators by (sparse) matri-
ces of size |FX |× |F| resp. |FY |× |F|.

Definition 4 A discrete graph surface is a closed discrete
product surface Γ ∈ {0,1}|F| which satisfies the projection
constraint, that is  ∂

πX
πY

 ·Γ =

 0|E|
1|FX |
1|FY |

 . (9)

2.4. Integer Linear Program

In Section 2.3 we have identified the correct search space for
our discrete diffeomorphism optimization problem. Before
stating the ILP formulation, we need to discretize the energy
given in (1) (or rather its symmetrized version which appears
in (2)).

Recall that each product triangle f =

(
a1 b1
a2 b2
a3 b3

)
has the

meaning to set fa =
(a1

a2
a3

)
in correspondence with fb =(

b1
b2
b3

)
in such a way that ai corresponds to bi. The cost of

such a correspondence is split in

E( f ) = Emem( f )+λEbend( f ). (10)

For the membrane term we adopt the discretization proposed
by Delingette. We refer the reader to [Del08] for the some-
what lengthy formula of the membrane cost EDel( fa, fb) for
deforming fa in fb. We use this discretization symmetrically

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



T. Windheuser, U. Schlickewei, F.R. Schmidt, D. Cremers / Large-Scale Integer Linear Programming for 3D Shape Matching

Figure 2: Discrete graph surfaces induce continuous
matchings (cf. Theorem 1 (b)). The figure shows two adja-
cent triangles fa (red) and fb (blue) on X (on the left) which
are set in correspondence with triangles ga (red) and gb
(blue) on Y (on the right). The triangles ge,1 and ge,2 (green)
on Y are contracted to the edge e between fa and fb as indi-
cated by the black arrows on the right. Thus, edge e has to
be stretched to the contractible patch marked in green.

and define

Emem( f )=


EDel( fa, fb)+EDel( fb, fa) if fa, fb non-deg.
2EDel( fa, fb) if fb deg.
2EDel( fb, fa) if fa deg.

(11)

For the bending term, we use the vertex-wise squared dif-
ference of mean curvatures, weighted with the mixed surface
areas. Mean curvatures are discretized using the scheme pro-
posed by Meyer et al. [MDSB02]. The resulting bending en-
ergy is

Ebend( f )=
3

∑
i=1

AX
i (HX (i)−HY (i))

2+
3

∑
i=1

AY
i (HX (i)−HY (i))

2.

(12)
Here, Ai

X resp. Ai
Y refer to the area of the Voronoi cell of

vertex i in triangle fa resp. in triangle fb.

Let now E be the vector of length |F| whose f -th entry
is the cost E( f ). We formulate the geometrically consistent
shape matching problem as the Integer Linear Program (ILP)

min
Γ∈{0,1}|F|

Et ·Γ

subject to

 ∂

πX
πY

 ·Γ =

 0|E|
1|FX |
1|FY |

 .
(13)

3. Geometric Consistency

In this section we we show that discrete graph surfaces in-
duce matchings with built-in geometric consistency. Loosely
speaking, Theorem 1 below says that discrete graph surfaces
as defined in Definition 4 induce orientation preserving, con-
tinuous and bijective matchings. To formulate this result in a
mathematically precise way we need some further notation.

A discrete product surface Γ induces correspondences be-
tween surface patches on X and on Y . To define these maps,

we introduce the projection

pX : F → FX ,

(
a1 b1
a2 b2
a3 b3

)
7→
(a1

a2
a3

)
(14)

Define pY : F → FY in a similar way. For a set A, denote by
P(A) its power set consisting of all subsets of A.

Definition 5 We define the correspondence map induced
by Γ as

ΓX : P(FX )→ P(FY )

A 7→ pY
(

p−1
X (A)∩Γ

) (15)

for all A ⊂ FX . The correspondence map ΓY : P(FY ) →
P(FX ) is defined analogously.

For an edge e= (a1
a2 )∈ EX on X we define the image patch

of e as

Γ(e) := ΓX

({(a1
a1
a2

)
,
(a1

a2
a2

)})
. (16)

Theorem 1 (Geometric Consistency) Let Γ ⊂ F be a dis-
crete graph surface. Then

(a) Γ induces orientation preserving correspondences of tri-
angles.

(b) Γ is continuous in the following sense: for adjacent tri-
angles f1, f2 sharing an edge e, the image patch Γ(e) is a
contractible path on the dual mesh of Y which connects
Γ( f1) and Γ( f2). This statement is visualized in Figure 2.

(c) Statement (b) is true with the roles of X and Y being in-
terchanged. Thus, Γ induces a bijective matching.

The proof of this theorem is elementary but somewhat
technical. It can be found in Appendix A. The continuity
statement in part (b) can be understood in the following
sense: The triangle maps from fi to Γ( fi) can be “contin-
uously” extended over an edge e by thickening e along the
contractible path Γ(e).

Note that the theorem does not say that Γ induces a bi-
jection between FX and FY . In fact, this is not even desir-
able, since degenerate triangles should only appear at places
where stretchings occur. However, the theorem assures that
by means of a discrete graph surface Γ, mesh X induces a
complete, geometrically consistent covering of mesh Y and
vice versa. Thereby, discrete graph surfaces are the correct
search space in order to find a discretized representation of
the optimal shape diffeomorphism, i.e., the optimal shape
matching.

4. Evaluation of LP Solution Strategies

In this section we explain how to get approximate solutions
to (13) using Linear Programming (LP) relaxation and we
evaluate the performance of several LP algorithms on our
problem.
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Figure 3: Correspondence of a running horse with a
standing horse. Correspondences are visualized by colored
patches and by connecting lines.

4.1. LP relaxation

The optimization problem (13) is a binary linear program
and as such an instance of an NP-hard problem. In order to
get approxiamte solutions we first use LP relaxation. This
means that we relax the binary constraints Γ ∈ {0,1}|F| to
Γ ∈ [0,1]|F ]. This relaxed problem can be minimized glob-
ally in polynomial time. Unfortunately, the constraint matrix
in (13) is not totally unimodular. Therefore, in general so-
lutions to the relaxed problem take values in the interior of
[0,1]|F|.

In order to construct a binary solution out of a solution of
the relaxed problem, we cannot apply a simple thresholding
scheme since this would destroy the geometric consistency
of the solution. Instead, we propose an iterative scheme:
solve the relaxed version of (13), fix the variables with values
above a threshold > 0.5 to 1 and solve the relaxed version of
(13) with these additional constraints. If there is no variable
with value above the threshold fix only one variable with the
highest value. In our experiments, this scheme typically con-
verged to a binary solution after less than 10 iterations, in no
experiment it took more than 20 iterations.

One of the benefits of LP relaxation is that the minimum
of the relaxed problem is a lower bound on the integer prob-
lem. This allows to specify the worst case energetic distance
between the approximate solution obtained by the iterative
scheme outlined above and the actual optimum of the ILP.
Experimentally we observed that this gap lies usually be-
tween 0 and 3 percent.

4.2. Evaluation of LP algorithms

We evaluated three different LP algorithms for solving the
relaxed version of (13):

• the simplex algorithm in the state-of-the-art implementa-
tion provided by the CPLEX package,
• the interior point algorithm in the CPLEX implementa-

tion,
• the parallelizable primal-dual algorithm proposed by Eck-

stein and Bertsekas [EB90] in our own GPU-based imple-
mentation.

The simplex algorithm could only handle very small-sized
toy problems of about 10 triangles per mesh. On problems of
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Figure 4: Comparison of the runtimes (in seconds) for solv-
ing the relaxed LP with the interior point method and with
the algorithm of Eckstein–Bertsekas depending on the prob-
lem size (number of triangles per shape). Visibly, for larger
problems the advantages of the GPU implementation of
Eckstein–Bertsekas become important.

this size the other two solvers were faster by a factor of about
10. For bigger problems the solver crashed.

A comparison of the performance of the interior-point
method and of the algorithm of Eckstein–Bertsekas is shown
in Figure 4. Visibly, for larger problem size the algorithm
of Eckstein–Bertsekas benefits from its parallel implemen-
tation and is much faster than the interior-point method.

Also we observed that for very large problems the interior-
point method in the CPLEX implementation run out of mem-
ory. This is in contrast with the algorithm of Eckstein–
Bertsekas which only needs to save the primal and the dual
variables and therefore has linear memory consumption.

5. Multiresolution Framework

Because the number of product triangles grows quadratically
with the number of triangles in both shapes the resulting In-
teger Linear Program (ILP) has a very high number of vari-
ables and constraints. Even the minimization of the relaxed
Linear Program (LP) becomes impractical for state-of-the-
art LP solvers, if the shapes have more than 250 triangles. In
this section we present a multiresolution approach that over-
comes this limitation and allows to match shapes of more
than 2000 triangles.

The basic idea of the multiresolution-resolution approach
is to solve the problem at a very coarse scale with the meth-
ods described in Section 4 and to recursively use the found
solution to narrow the search space at the next finer level. To
reduce the size of the search space we impose that a possi-
ble solution at a finer level must lie "near" an already found
solution at the coarser scale.

For the definition of "near" we use a hierarchy of trian-
gles across the resolution levels. Suppose that we obtain
a triangle mesh Xi from a finer triangle mesh Xi+1 by re-
peatedly merging triangles. In practice we use the quadric
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Figure 5: The matching between a stretching cat on the left
and a standing cat on the right.

edge decimation algorithm [GH97] in its OpenMesh imple-
mentation [BSBK02]. Denote by χi : F(Xi+1)→ F(Xi) the
child-parent relation, mapping each triangle in FXi+1 to the
triangle it is merged to on the coarser mesh Xi. These maps
are extended to maps between the extended sets of triangles
χi : FXi+i → FXi (see Section 2.2).

Let now X and Y be two high-resolution meshes and let
X = Xn,Xn−1, . . . ,X0 and Y = Yn,Yn−1, . . . ,Y0 be succes-
sive coarsenings with corresponding child-parent relations
{χi}0≤i≤n−1 and {ψi}0≤i≤n−1. We proceed as follows:

1. We compute a discrete graph surface Γ0 (cf. Definition 4)
inducing a matching of the coarsest meshes X0 and Y0. We
use the methods described in Section 4 for this task.

2. Assuming inductively that we have found a discrete graph
surface Γi which induces a matching of Xi and Yi, we
search for a discrete graph surface Γi+1. This surface has
to lie in a search space which is reduced using the input
of the already computed surface Γi. Rather than allow-
ing Γi+1 to be built of all product triangles Fi+1 between
Xi+1 and Yi+1, we only allow for product triangles whose
parents or whose parents’ neighbors are set in correspon-
dence by Γi. Thus, Γi+1 is searched as a subset of the re-
duced set of product triangles

F red
i+1 =

( fa, fb) ∈ Fi+1

∣∣∣∣∣∣∣∣
∃( f ′a, f ′b) ∈ Γi ⊂ Fi s.t.

χi( fa) ∈N ( f ′a) and

ψi( fa) ∈N ( f ′b)

 .

(17)
Here, for a triangle f on a triangle mesh we used the set
of triangles in the one-ring or the two-ring of its vertices
as neighborhoodN ( f ).
Then we compute Γi+1 by solving problem (13) over the
reduced search space, that is Γi+1 ∈ {0,1}|F

red
i+1|.

3. We repeat Step 2. until a discrete graph surface Γn has
been computed which induces a matching between X and
Y .

6. Experimental Results

To experimentally validate the proposed algorithm we did an
extensive evaluation on shapes from several datasets. For the
shown models we computed dense correspondences at a res-
olution of about 1000 vertices. Since dense high-resolution
matchings do not allow a direct visualization we chose a
sparse set of vertices on one shape by means of farthest point

Figure 6: The proposed method is robust to cases where
several parts of a model are missing. As expected from the
elasticity property of the energy function, the missing parts
are shrinked correctly from the entire model to incomplete
model.

sampling and we rendered its Voronoi cell and the Voronoi
cell of its correspondence partner on the other mesh with the
same color.

6.1. Partial Matching

The ability of the proposed method to model stretching and
shrinking also allows to match shapes where large parts
of the geometry are missing. The right image of Figure 6
demonstrates this ability experimentally. The proposed algo-
rithm matches the remaining parts of a human body missing
a hand, a leg and the head to its original shape.

6.2. Influence of Feature Descriptors

One of the benefits of the framework described in Section
2 is its flexibility regarding the diffeomorphism energy. In-
deed, any first order energy with a data term of order zero
and a first-order regularizer involving the diffeomorphism’s
Jacobian can be handled.

As an example we extended the thin-shell energy by a
data term comparing the Wave Kernel Signatures (WKS)
[ASC11] of matched vertices. This data term EWKS was
computed in the same way as the bending term in (12). The
resulting matching energy of a discrete graph surface Γ was
then

E(Γ) = Emem(Γ)+λEbend(Γ)+µEWKS(Γ). (18)

While the results of the matchings visually do not change
a lot when setting µ to 1 (see Figure 7), interestingly the
computation time decreases dramatically. The reason for the
decreasing runtimes is that with the use of a feature descrip-
tor the solution to the LP relaxation explained in Section 4.1
often happens to be binary. This was the case in 56% of our
experiments with the signature term compared to 13% with-
out the signature term. Overall the average number of fixing
steps decreased from 8 to 2.3 by using the signature term.
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with feature descriptor without feature descriptor

Figure 7: Influence of a feature descriptor on the computed
matching. On the left we visualize the matching computed
with the energy extended by a feature descriptor. The corre-
spondences on the right are obtained by minimizing only the
thin-shell energy.

6.3. Quantitative Evaluation

For quantitatively evaluating the proposed method we used
pairs of models from the dataset of Vlasic et al. [VBMP08].
Namely, we took 10 pairs of models from each of the sets
"crane", "samba" and "bouncing" at a resolution of 500 ver-
tices. We computed the matchings between each of the 30
pairs by using the proposed algorithm and by using the
GMDS method by Bronstein et al. [BBK06]. One of the
models used in the evaluation is shown in Figure 8.

Since the exact ground truth correspondences (xi,yi) are
available for these models X ,Y , we measured the qual-
ity of a matching ϕ : X → Y by the mean geodesic error
1
N ∑i d(ϕ(xi),yi) where N is the number of vertices being
matched and d the normalized geodesic distance on the man-
ifold of mesh Y .

Because GMDS cannot guarantee to deliver an
orientation-preserving matching, out of the 30 pairs of
models it produced 12 matchings that inverted the orienta-
tion as a whole. As there is no ground truth available for
this case, we ignored these matchings in the evaluation.
On the other hand, on 8 of the 30 models, the GMDS
algorithm computed matchings with partially intertwined
orientations. Figure 8 shows such an example where the left
hand is matched to the left hand but right foot is matched
to left foot. In contrast to this, our method preserved the
orientations in all examples.

The mean geodesic error produced by GMDS (using their
code) was 0.079 while the proposed method had a mean
geodesic error of 0.03.

7. Conclusion

We present a framework for efficiently computing high-
resolution orientation-preserving matchings among three-
dimensional shapes. Because surface patches rather than
points are set into correspondence we were able to prove
that registrations computed by this method are geomet-
rically consistent in the sense that they are continuous
and orientation-preserving. We derived an ILP formulation

proposed method GMDS

Figure 8: Comparison of a matching computed with the
proposed method (on the left) and with GMDS proposed by
Bronstein et al. [BBK06] (on the right). The proposed match-
ing method guarantees to preserve the orientation. In con-
trast, GMDS may preserve the orientation on the upper part
of the body while it inverts the orientation of the legs – in
our evaluation this happened 8 times out of 30. (Visulization
with MATLAB code by Bronstein et al.)

whose relaxed version can be minimized globally in polyno-
mial time. We discussed and quantitatively compared appro-
priate algorithms for efficiently solving this ILP. In particu-
lar, we introduced a multiresolution framework which allows
to handle meshes of higher resolutions. Numerous experi-
ments confirm that the proposed method computes reliable
dense matchings of real-world three-dimensional shapes.

Acknowledgment

We used mesh data from Vlasic et al. [VBMP08] (Figures 7
and 8), from the SHREC 2011 benchmark [BBB∗11] (Fig-
ure 6) and from Sumner and Popović [SP04] (Figures 1, 3
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Appendix A: Proof of Theorem 1

The plan of this Appendix is as follows: First we analyze
the map Γ→ X . In Proposition 1 we will prove that it is
simply a sequence of edge contractions. This will be one
of the key points in the proof of Theorem 1 which we will
develop afterwards.

In order to formulate the result on the map Γ→X we need
the notion of edge contractions in simplicial complexes. An
abstract simplicial complex K consists of a set K of subsets
of a vertex set V such that for each a ∈ V the set {a} is
contained in K and such that for all σ ∈ K and for all sub-
sets τ ⊂ σ we have τ ∈ K. The sets in K are called faces,
the dimension of a face σ is card(σ)− 1. Two-dimensional
faces are called triangles, one-dimensional faces are edges
and zero-dimensional faces are vertices. The dimension of a
simplicial complex is the maximum of the dimensions of its
faces.

A simplicial map between two simplicial complexes K =
(K,V ) andK′ = (K′,V ′) is a map p : V →V ′ which satisfies
p(σ) ∈ K′ for all σ ∈ K. A simplicial map is surjective if so
is p and it is an isomorphism if p is bijective. By definition,
a simplicial map induces a map on the set of faces which is
again denoted by p : K→K′. Explicitely, this map is defined
by p({v1, . . . ,vn}) = {p(v1), . . . , p(vn)}.

Let now e = (a1
a2 ) ∈ K be an edge of K. The contraction

of K along e is a simplicial complex K′ together with a sur-
jective simplicial map p between K and K′ which we now
define. The vertex set V ′ ofK′ is defined by replacing a1 and
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a2 in V by a new vertex c, i.e. V ′ = (V \{a1,a2})∪{c}. We
introduce the map

p : V →V ′, a 7→

{
a if a ∈V \{a1,a2}
c else.

(19)

Then the set of faces ofK′ is defined as K′= {p(σ) |σ∈K}.
Note that during this operation faces can be deleted because
K′ is a set and therefore each face appears only once. For
example, when contracting an edge on a triangle mesh, typ-
ically one deletes two faces, three edges and one vertex.

In our context, X naturally carries the structure of a sim-
plicial complex.

The discrete product surface Γ⊂ X×Y induces a simpli-
cial complex KΓ = (KΓ,VΓ) in the following way: the set of
vertices VΓ of KΓ consists of all product vertices in VX ×VY
which are adjacent to a product triangle in Γ. The set of faces
KΓ is defined as the set containing all subsets of sets of the

form {(a1,b1),(a2,b2),(a3,b3)} where
(

a1 b1
a2 b2
a3 b3

)
∈ Γ.

Proposition 1 The natural projection VX × VY ⊃ VΓ →
VX , (a1,b1) 7→ a1 induces a simplicial map psimp

X between
KΓ and X which is a sequence of edge contractions followed
by a simplicial isomorphism.

Idea of Proof (Proposition). Starting with the simplicial sur-
jection KΓ → X we construct a series of simplicial surjec-
tions KΓi → X by iteratively contracting all edges of KΓi

whose projections on X are single vertices until we reach a
simplicial isomorphism KΓn → X . �

Before proving the theorem we will formulate a technical
lemma which will be used in the proof of the theorem.

Lemma 1 Let e = (a1
a2 ) be an edge incident to two oriented

triangles f1 =
(a1

a2
a3

)
, f2 =

(a2
a1
a4

)
∈ FX on X .

(i) Define p−1
X (e) := p−1

X

({(a1
a1
a2

)
,
(a1

a2
a2

)})
where pX was

introduced in (14). Then any two triangles in p−1
X (e)∩

Γ may be connected by a path of product triangles
g1, . . . ,gn with gi ∈ p−1

X (e)∩Γ such that for each i the
triangles gi and gi+1 share a product edge which lies over
e.

(ii) The set of all triangles in (p−1
X ({ f1, f2})∪ p−1

X (e))∩Γ

is connected.

The proof of the lemma is elementary but tedious. It relies
on studying the preimages of edges and faces under edge
contractions in simplicial complexes and on inductive appli-
cation of Proposition 1.

Proof of Theorem 1. The orientation preservation property
(a) is immediate since by construction F only contains ori-
entation preserving triangle correspondences.

To prove (b), let f1 =
(a1

a2
a3

)
and f2 =

(a2
a1
a4

)
be two trian-

gles on X which share the edge e = (a1
a2 ). Let f 1 =

(
a1 b1
a2 b2
a3 b3

)
and f 2 =

(
a2 b4
a1 b5
a4 b6

)
be the uniquely defined product triangles

in Γ lying over f1 and f2.

If b1 = b2, corresponding to the case that the edge e
is contracted by Γ, then the neighbor of f 1 over the edge(

a1 b1
a2 b1

)
is necessarily f 2 because this neighbor projects

to a non-degenerate triangle on X which has the edge
(a2

a1 ). On the other hand, no triangle in p−1
X (e) ∩ Γ =

p−1
X

({(a1
a1
a2

)
,
(a1

a2
a2

)})
∩Γ has an edge in common with f 1

or with f 2 because such a triangle would be degenerate in
both projections. Using Lemma 1 (ii), this implies that Γ(e)
is empty and that Γ( f1) and Γ( f2) are adjacent on Y .

If on the other hand b1 6= b2, then b4 6= b5. If a product tri-
angle in p−1

X (e)∩Γ is adjacent to f 1, it is necessarily of the

form
(

a2 b2
a1 b1
a1 b7

)
or
(

a2 b2
a1 b1
a2 b7

)
where b7 is the uniquely defined

third vertex of the triangle
(

b2
b1
b7

)
on Y . Similarly, if a prod-

uct triangle in p−1
X (e)∩Γ is adjacent to f 2, it is necessarily

of the form
(

a1 b5
a2 b4
a1 b8

)
or
(

a1 b5
a2 b4
a2 b8

)
for some b8. Thus, if Γ(e)

is non-empty, using Lemma 1 (ii), one of these four prod-
uct triangles has to be activated. Since there is nothing to

prove for Γ(e) empty, we assume w.l.o.g. that g1 =

(
a2 b2
a1 b1
a1 b7

)
is contained in Γ. Using that Γ is closed, there exists a prod-

uct triangle g2 =

(
a2 b2
a1 b7
a5 b9

)
∈ Γ. If a5 = a4, by the projection

constraint we have g2 = f 2. Otherwise we have a5 = a1 or
a5 = a2 and g2 ∈ p−1

X (e)∩ Γ. In this case g2 has a prod-
uct edge which lies above (a1

a2 ) and with the same argument
we find a product triangle g3. Continuing this process in-
ductively we obtain a triangle path g0 = f 1,g1,g2, . . . with
gi ∈ p−1

X (e)∩Γ for i > 0. This path cannot have loops be-
cause the remaining third edge of each of the gi is contracted
to a1 or to a2. Since there are only finitely many product tri-
angles, the path stops after say n steps with gn+1 = f 2.

Finally, no triangle other than g1, . . . ,gn in p−1
X (e) ∩

Γ may be connected to the gi over an edge which lies
above e. Therefore, using Lemma 1 (i), we get p−1

X (e) =
{g1, . . . ,gn}.

The proof of statement (c) is analogous. �
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