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Abstract

We present a fast graph cut algorithm for planar graphs.

It is based on the graph theoretical work [3, 2]1 and leads

to an efficient method that we apply on shape matching and

image segmentation. In contrast to currently used meth-

ods in Computer Vision, the presented approach provides

an upper bound for its runtime behavior that is almost lin-

ear. In particular, we are able to match two different planar

shapes of N points in O(N2 logN) and segment a given

image of N pixels in O(N logN). We present two experi-

mental benchmark studies which demonstrate that the pre-

sented method is also in practice faster than previously pro-

posed graph cut methods: On planar shape matching and

image segmentation we observe a speed-up of an order of

magnitude, depending on resolution.

1. Introduction

One of the major challenges for modern Computer Vi-

sion is the abundance of high-resolution image data. This

poses an urgent need for algorithms with fast and pre-

dictable runtimes. Many of the computational challenges

including image segmentation, stereo reconstruction or

shape matching have recently been addressed by graph cut

approaches, because these allow to efficiently solve the un-

derlying labeling or correspondence problems in a globally

optimal manner. In particular, researchers have employed

graph cuts for stereo reconstruction with convex neighbor-

hood potentials [5], for image segmentation [4, 11, 17],

for multiview reconstruction [20, 22] or for planar shape

matching [19].

To date the graph cut algorithm of Boykov and Kol-

mogorov is considered the fastest existing algorithm for

these types of applications [5]. Nonetheless, there is no

known polynomial upper bound for the runtime of the algo-

rithm of Boykov and Kolmogorov. In fact, in applications

of interactive segmentation its runtime typically depends on

1Note that this version of the paper is modified with respect to the pub-

lished one: In the published version we had only cited the PhD thesis [2],

as the conference paper [3] does not mention Step 13 of Algorithm 2 that

restores the important property of T being a rooted tree.

Figure 1. Planar graph cut applications. Numerous computa-

tional challenges like image segmentation or shape matching can

be solved by means of planar graph cuts. In this paper, we propose

an efficient algorithm for planar graph cuts which has better com-

putational complexity, substantially higher speed and more pre-

dictable runtimes than currently used algorithms.

the initialization, i.e., on the user-specified choice of pix-

els that belong to the object. A lot of effort has been put

into improving the runtime of maximum flow computation,

by means of flow recycling [14], capacity scaling [13] or

multi-scaling [7]. While these strategies often lead to re-

duced computation times, none of them reduces the worst

case complexity of the methods that they were built on. A

recent comparison of graph cuts versus dynamic program-

ming on the problem of planar shape matching [19] demon-

strates the lack of a strong upper bound on the graph cut

computation time: While the matching of similar shapes via

graph cuts was faster than the commonly used dynamic pro-

gramming approach, the matching of very dissimilar shapes

was substantially slower. This absence of an upper bound

can be an important restriction for the use of graph cuts in

time-critical applications where each component of a com-

plex system needs to provide its output within a specified

time frame.

The goal of this work is to overcome this restriction for

a certain subclass of graph cut applications, namely for pla-

nar graphs. Such planar graph cuts include the cases of pla-

nar shape matching [19] and that of image segmentation ap-

proaches such as the intelligent scissor method [16]. Firstly,

we propose a planar graph cut algorithm which is built on

the method of Borradaile [2]. Secondly, we will show in

two benchmark tests on planar shape matching and image

segmentation that the proposed algorithm outperforms ex-

isting graph cut solutions both in terms of worst-case com-

plexity and in terms of actual computation times.
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This work is organized as follows. In Section 2, we

present some notations and revisit ideas of graph cut meth-

ods. In Section 3, we discuss the recent development on pla-

nar graph cut algorithms [2, 23] and propose an accelerated

version by reducing the amount of involved data structures.

In Section 4, we will present experimental benchmarks on

image segmentation and shape matching. We will show that

this method provides the first graph cut based shape match-

ing method which needs only O(N2 logN) computation

steps. Additionally, we provide an O(N logN)-approach
for image segmentation. In both experiments our algorithm

exhibits runtimes which are not only consistently smaller

than those of the Boykov and Kolmogorov algorithm, but

which are also more predictable in the sense that they ex-

hibit a far smaller spread. Section 5 provides a conclusion.

2. Polynomial Time Solutions for Graph Cuts

In this section, we present some basic notations for graph

cuts. This general formalism will be used to solve the shape

matching and image segmentation task in Section 4. A

graph network G = (V,E, c, s, t) consists of a set of ver-

tices V that are connected via oriented edges E ⊂ V × V

whereas the source s ∈ V provides only outgoing edges

and the sink t ∈ V only incoming edges. Every edge

e = (u, v) is equipped with a positive capacity c(e) ∈ R
+

and we call C ⊂ E an st-cut if there is no path from the

source s ∈ V to the sink t ∈ V in the reduced network

G̃ = (V, (E \C), c, s, t). The problem of finding a minimal

cut C can be formulated as following:

Problem 1 MINIMAL CUT

Input: Graph network G = (V,E, c, s, t)
Output: st-Cut C ⊂ E which minimizes

∑
e∈C

c(e)

A major milestone to solve this general problem was the

MinCut-MaxFlow theorem [10] which stated that the MIN-

IMAL CUT problem is equivalent to solving the MAXIMAL

FLOW problem:

Problem 2 MAXIMAL FLOW

Input: Graph network G = (V,E, c, s, t)
Output: Flow f ≤ c maximizing

∑
(v,t)∈E

f(v, t)

The main idea to solve the MAXIMAL FLOW problem is

to start with a flow f : E → R
+

0 that assigns 0 to every edge
e ∈ E and then to augment the flow along paths from source

to sink on which none of the involved edges are saturated,

i.e., f(e) < c(e). This augmenting path strategy solves the

problem and if we are only using shortest paths, the prob-

lem can be solved in polynomial time [8]. Nonetheless, this

runtime is in general too high. In [5] the authors presented a

min-cut algorithm solving many Computer Vision problems

effectively in linear time. However, the approach cannot

guarantee to always augment the shortest path from source

to sink and therefore it provides no polynomial upper run-

time bound.

On the other hand, it is known [23] that an almost lin-

ear runtime2 is an upper bound for planar networks. These

are networks that can be embedded in the plane R
2. This

means that the edges cut the plane open into different faces

F . An import property of planar graphs is that two different

edges may not cross each other. Therefore, every edge e has

a well defined left face fl(e) ∈ F and right face fr(e) ∈ F .

To every planar networkG, we can therefore define the dual

network G∗ := (F,E∗, c, s∗, t∗) by introducing dual edges

e∗ := (fl(e), fr(e)) which connect the left with the right

face of an edge. The dual vertices s∗ and t∗ are arbitrary

faces in the vicinity of s and t respectively. In the next sec-

tion, we will show that the planar graph cut needs almost

linear runtime by revising and improving the work of [2].

In Section 4 we will apply this method to Computer Vision

problems and present a substantially runtime acceleration

for shape matching and image segmentation.

3. Efficient Planar Graph Cuts

In [23], it was first shown that for planar graphs with N

vertices, the maximal flow can be computed inO(N logN).
Unfortunately, the proposed method requires a rather com-

plicated preprocessing step and hence is not ideally suited

for practical implementations. To overcome this drawback,

in [2] a new method was proposed that uses a simpler pre-

processing step. The core idea of this method is it to aug-

ment always the leftmost of all paths from source to sink:

Algorithm 1 Planar Maximal Flow [2]

Input: Planar Graph network G = (V,E, F, fl, fr, c, s, t)
Output: Maximal Flow f : E → R

+

1: Remove from G all clockwise cycles

2: Initialize the flow f with 0

3: while there is a non-saturated path from s to t do

4: saturate the leftmost path from s to t

5: end while

6: return f

Step 1 of Algorithm 1 is a preprocessing step which can

be computed in O(N logN). A challenging implemen-

tation task is in fact Step 4. Like any augmenting path

method, it (cf. Algorithm 2) handles a spanning tree T of

all vertices V to keep track of the augmenting path from

source to sink efficiently. Additionally, the method handles

also a spanning tree T ∗ of all faces F to support the updat-

ing scheme of T . Since the graph is planar, all edges which

are not in T form the tree T ∗ (cf. Figure 2). Lines 8, 9 and

13 of Algorithm 2 take care of this invariant.

2By almost, we are referring to the Õ-notation, i.e., n log(n) = Õ(n).



s
t

d
d

d
e e

e

t∗

f1

f2

f3

uu
u

xx

x

v

v

y
y

Figure 2. Planar max flow method.(A|B|C|D):In each step, the thick edges indicate the spanning tree T of the primal graph. Dashed

lines represent the edges of the spanning tree T ∗ of the dual graph. A shows the initialization of the method. At every step, an edge

d = (u, v) of the tree T is substituted by an edge e = (x, y). When the method terminates in D, neither T nor T ∗ are trees anymore.

Moreover, in T ∗ a circle emerges which describes the minimal cut.

Algorithm 2 Implementation of Step 4 [2]

1: Let T be the right-first search tree backward from t.

2: Let T ∗ be the spanning tree of F consisting of all edges of

E − T .

3: repeat

4: Augment path from s to t, update the flow f and let d =
(u, v) the closest edge to t which is saturated.

5: Let (f1, f2) the dual edge d
∗ of d.

6: Let e∗ = (f2, f3) be the parent edge of f2 in T ∗.

7: Let e = (x, y) be the primal edge with respect to e∗.

8: T ∗ := T ∗ + {(f2, f1)} − {(f2, f3)}.
9: T := T − {d}+ {e}.

10: if f1 is a descendent of f2 within T ∗ then

11: return f

12: end if

13: Reverse in T the edges along the path from x to u.

14: until false

It is shown that the repeat-loop is repeated at mostO(N)
times and that the usage of Dynamic Tree [21] for T and Eu-

ler Tour Tree [12] for T ∗ results in anO(logN)-runtime for

the Lines 4-13. Hence, the method computes the maximal

flow in O(N logN).
Nonetheless, the test for the termination condition

(Line 10) is a bottleneck of Algorithm 2. The theoretical

contribution of our work is to get rid of the Euler Tour Tree

and instead maintain T ∗ by an array which stores the parent

of each face. Originally, the Euler Tour Tree was used in

order to test Line 10 in O(logN). However, modification

and parent access (Line 6 and 8) of T ∗ then take the same

amount of time. We therefore propose an equivalent test on

T instead of T ∗. In this section, we will present this alter-

native test and prove its equivalence in Theorem 1. Instead

of Lines 10-12, we perform the test of Algorithm 3:

Algorithm 3 Alternative Termination Condition for T

10: if there is no path from x to u in T then

11: return f

12: end if

Surprisingly, the new test takes no additional time, since

the path from x to u has to be identified in Line 13 any-

way. Furthermore, the T ∗-related Lines 6 and 8 can now be

done in O(1) instead of O(logN). This runtime reduction

makes this method attractive for Computer Vision tasks as

we will see in Section 4. The following theorem proves the

correctness and efficiency of the proposed method:

Theorem 1. The proposed method solves the Maximum

Flow problem in O(N logN).

Proof. Our approach substitutes Lines 10–12 of Algo-

rithm 2 with Algorithm 3. As long as f1 is not a descendant

of f2, both approaches do not differ from one another. This

is due to the fact that Line 13 of Algorithm 2 implies the

existence of a path from x to u in T . Therefore, let us now

assume that f1 is in fact a descendant of f2. Then, there

exists a path from f1 to f2 in the dual tree T
∗. In Line 8 the

dual edge (f2, f1) is inserted into T
∗ and this data structure

possesses now a counter clockwise circle which encloses

the vertex u (cf. Figure 2,D). Since e∗ was an edge that left

f2, the two vertices x and y are now outside of the just con-

structed circle. Therefore, Line 10 of Algorithm 3 cannot

find a path from x to u and the proposed method terminates

returning the same flow as Algorithm 2. The computational

complexity is preserved.

4. Applications

In Computer Vision there is an abundance of problems

that can be addressed as finding a minimal cut through a

planar graph such as shape matching, image segmentation

or cyclic time series. In this section, we address the first two

problems which are chosen exemplarily to substantiate the

relevance of planar graphs in Computer Vision.

4.1. Shape Matching

An important task of Computer Vision is to classify a

given contour c0 : S1 → R
2 which maps every point of the

parameterizing circle S1 onto the plane R2. To perform this

classification task, we measure the similarity between the

given contour and a collection of known shapes. A shape C
consists of a whole class of different curves c : S1 → R

2

which is invariant under rigid body transformations SE(2).
To measure the dissimilarity of two given shapes, we are

looking for a dynamic correspondence mapping m : S1 →
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Figure 3. Planar Shape Matching. Left: To measure the dissimilarity of two given shapes, we are looking for corresponding points on

different shapes. Middle: By sampling two shapes C1 and C2 with N points, we receive a squared graph (filled vertices). Every matching

can be represented by a path from (a, 0) to (a +N,N). Right: Identifying these vertices, results in gluing the red edges together. Every

cycle on this arising cylinder describes a cut on the dual graph G∗ (dashed edges).

S
1 that maps any point of the first shape onto the corre-

sponding point of the second shape. Hence, we are inter-

ested in minimizing the energy functional

Ef1,f2(m) :=

∫

S1

‖f1(s)− f2(m(s))‖
2
dm(s), (1)

where f describes a feature that is SE(2)-invariant. Besides
the curvature, the shape context [1] and the inner shape con-

text [15] are prominent features for shape analysis.

4.1.1 Shape Matching via Dynamic Programming

It is well known that the energy functional (1) can be

minimized by finding the shortest path in a specific graph

(cf. middle of Figure 3). Any vertex (x, y) ∈ V rep-

resents a possible match between c1(x) on the first shape

and c2(y) on the second shape and the data term of this

vertex is ‖f1(x)− f2(y)‖
2
. Therefore, the weight of an

edge (x1, y1) → (x2, y2) carries the line integral along this

path. If we sample each shape by N points, any path from

(x, 0) to (x + N,N) describes a valid matching. Hence,

the minimizer of (1) can be found by looking for the short-

est path in that graph. Given an initial correspondence

(x, 0), the shortest path can be computed via Dynamic Pro-

gramming [15] which takes linear time in the size of the

graph. After testing thoroughly ever possible initial corre-

spondence, we would end up with a runtime of O(N3). It
is possible to reduce the runtime for this specific applica-

tion [18]. But the proposed graph cut approach reduces the

time complexity directly as we will show below.

4.1.2 Shape Matching via Graph Cuts

It is possible to transform the shape matching problem into

a graph cut problem: By identifying every node (a, 0) with
(a+N,N), the graph becomes a cylinder and each shortest

path becomes a closed cycle that separates the two outmost

nodes (cf. Figure 3). After taking the dual graph [19], every

cut corresponds to a valid matching between the compared

shapes. The matching corresponding to the minimal cut

represents the minimizer of functional (1). Since the con-

structed graph is planar, we can apply the presented graph

cut method of Section 3. The size of the graph isO(N2) and
the proposed method runs in O(N2 logN). In Figure 5, the
runtime for two different examples are given. As we can

see, the presented implementation outruns the other meth-

ods and provides a speed-up factor of 2–4 with respect to the

the original work of Borradaile. Interestingly, the graph cut

approaches become faster at the presence of similar shapes.

This is due to the fact that the cut, i.e., the bottleneck of

the defined network, is much easier to detect if we compare

similar shapes.

The efficiency of shape matching is crucial to ana-

lyze shapes correctly. A very challenging database is the

MPEG7-database (cf. Figure 6). It consists of 70 different

shape classes which are represented by 20 different shapes

each. For the benchmark, one calculates the 40 closest

shapes to a given shape according to the used metric. If

among these shapes, there are k shapes of the same class

as the query shape, the retrieval rate is k
20
. The mean of

all 1400 retrieval rates is the retrieval rate of the database.

There exist several methods that were used to handle this

database. Among the best is the graph transduction ap-

proach [24] with a retrieval rate of 91% which is based on

the inner shape context [15]. While maintaining the same

retrieval rate, our algorithms allows to reduce the compu-

tation time for the inner shape context. Figure 5 indicates

that the speed-up factor of the proposed method increases

substantially for increasing shape resolutions.

4.2. Image Segmentation

A second computational challenge in Computer Vision

is that of image segmentation. A classical approach is the

geodesic active contour pioneered in [6]. This approach

tries to minimize energies of the form

E(C) :=

∫

C

g(|∇I|)dC + α length(C), (2)



Figure 4. Runtimes of image segmentation. The runtime on the y-axis is measured in seconds and depends on the resolution of the

images. The proposed approach is faster than the method of Boykov and Kolmogorov. Also, it has a much smaller runtime spread for

different images and the observed speed-up increases at higher image resolutions.

with respect to a segmentation boundary C and a monoton-

ically decreasing function g that penalizes low image gra-

dient along that boundary. Therefore, the minimizing curve

is forced to areas of the image which contain a high image

gradient. But unfortunately, the global minimum of (2) is

the empty contour. This drawback can be overcome by re-

stricting the set of feasible curves which leads to interactive

segmentation tools:

• The user may select a certain region of the image that

should belong to the object and the curves that shall

minimize (2) are then restricted to those that wind the

given region exactly once [9].

• The user may suggest an object’s boundary and the set

of feasible curves is restricted to those which lie within

the vicinity of the input curve. This approach is also

known as intelligent scissor [16].

Both interactive approaches select a certain connected

region S as object and another region T as background. By

replacing S and T with nodes s and t, respectively, the min-

imizer of (2) is a closed circular path which winds around

s exactly once. For the given planar graphs, this is equiva-

lent to an st-cut. Therefore, this specific segmentation task

can be solved by a minimal cut approach. If the input im-

age consists of N pixel, the segmentation task can be per-

formed in O(N logN) calculation steps by using the pro-

posed method.

In Figure 4, the result of a benchmark test is plotted

and one can see that the presented maximum flow approach

outruns the method of Boykov and Kolmogorov. For the

benchmark we used different images that consist of ap-

proximately 4 Megapixels each. These images were scaled

down to different resolution and we tested both methods on

the smaller versions. We can therefore compare how the

two methods work on the same scene with different resolu-

tions. Figure 4 indicates that the runtime of the proposed

method is more predictable than the method of Boykov and

Kolmogorov. Since the speed-up factor increases with an

increasing image resolution, the proposed method is also

more suited for high-resolution images. As in the shape

matching example, the speed-up factor of the proposed ap-

proach with respect to the original work is 2–4.

5. Conclusion

In this paper, we presented a graph cut approach for pla-

nar graphs which solves the problem in O(N logN) and

thus – in contrast to the currently used algorithm of Boykov

and Kolmogorov – provides a known upper bound on the

worst case complexity. Our algorithm is built on the re-

cently published method [2]. It reduces substantially the

amount of required data structures and is therefore faster.

We demonstrated the advantages of this compressed ver-

sion of a maximum flow method in two benchmark tests,

one on planar shape matching with increasing shape reso-

lution, and one on image segmentation with increasing im-

age resolution. For these examples, we observed a speed-up

factor of 2–4 w.r.t. the work of Borradaile and of an order

of magnitude w.r.t. the work of Boykov and Kolmogorov.

Hence, the proposed graph cut method outperforms the one

of Boykov and Kolmogorov in terms of worst-case com-

plexity, in terms of actual (experimental) runtimes and in

terms of predictability (observed spread of runtimes). This

makes our algorithm well suited for time-critical applica-

tions where a predictable and guaranteed fast performance

is required.
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