
Fast Matching of Planar Shapes in Sub-cubic Runtime ∗

11th IEEE International Conference on Computer Vision, Rio de Janeiro, 2007. c©IEEE.

Frank R. Schmidt
Computer Science Department
University of Bonn, Germany

Dirk Farin
University of Technology

Eindhoven, The Netherlands

Daniel Cremers
Computer Science Department
University of Bonn, Germany

Abstract

The matching of planar shapes can be cast as a prob-
lem of finding the shortest path through a graph spanned
by the two shapes, where the nodes of the graph encode the
local similarity of respective points on each contour. While
this problem can be solved using Dynamic Time Warping,
the complete search over the initial correspondence leads
to cubic runtime in the number of sample points.

In this paper, we cast the shape matching problem as
one of finding the shortest circular path on a torus. We pro-
pose an algorithm to determine this shortest cycle which
has provably sub-cubic runtime. Numerical experiments
demonstrate that the proposed algorithm provides faster
shape matching than previous methods. As an application,
we show that it allows to efficiently compute a clustering of
a shape data base.

1. Introduction

The computation of distances between planar shapes is
of fundamental importance in image analysis as it is a pre-
requisite for tasks such as shape clustering or the retrieval of
similar shapes from a data base. The exponential increase of
available visual data on the Internet creates a growing need
for algorithms which compute such distances efficiently, as
most of the above tasks require large numbers of pairwise
shape comparisons. At the same time, many interesting
shape metrics involve the computation of a matching which
assigns a correspondence between points on either of the
two shapes. In the present paper, we propose a new algo-
rithm to solve this computational challenge efficiently.

The efficient computation of elastic matchings via dy-
namic programming techniques has a long tradition in the
fields of string alignment, speech recognition, stereopsis
and handwriting recognition [3, 10].

This approach has also been frequently applied to the
matching of planar shapes [6, 2, 5, 9]. The key idea of the
above approaches is to first select a corresponding pair of

∗This work was supported by the German Research Foundation, grant
#CR-250/1.1

Figure 1. While the matching of two planar shapes (indicated by
the green lines) can be computed efficiently using Dynamic Time
Warping once an initial correspondence is known, most traditional
methods require a complete search over the initial correspondence
(red circles).

points on each of the two shapes — see the red circles in
Figure 1. The subsequent matching of points on one shape
to points on the other can then be solved by finding the
shortest path through a graph, the nodes of which encode
the similarity of respective point pairs. Local similarity can
either be the difference of the curvature at points on either
shape or some alternative integral invariants [9, 11]. If both
shapes have n points, then the graph has n2 nodes and the
run-time of Dynamic Time Warping to find the shortest path
is n2. However, in order to consider all (non-self-occluding)
matchings, one needs to consider all possible initial corre-
spondences. In the above works, this aspect of the solution
has been addressed by a complete search over all initial cor-
respondences leading to an additional factor of n and thus
cubic run-time. In [7] a cyclic string matching method was
introduced and applied to shape matching [8, 12].

In this paper, we propose a more efficient matching al-
gorithm by generalizing the fast algorithm for computing
shortest circular paths on planar graphs [4] to graphs hav-
ing a torus topology. In Section 2, we will develop this
algorithm. In Section 3, we will prove that the runtime is
at most O(n2 log(n)). Experiments demonstrate that run-
times compare favorably to those of alternative algorithms.
As an application, we show in Section 4 that our algorithm
allows to efficiently compute a clustering for a data base of
shapes.

1

2. Matching of Planar Shapes
2.1. Shape Matching as a Shortest Cycle Problem

As a shape C, we understand the class of closed curves c :
S1 → R2 that is invariant under rigid body motions. These
shapes form the shape space S which can be described in
means of the curves’ curvature functions:

S :=
{
κ : S1 → R

∣∣κ curvature of c : S1 → R2
}

(1)

By introducing S, all rigid body motions are eliminated and
we can focus on the non-rigid shape transformations. To
detect local transformations like stretching and contraction,
we are looking for a correspondence mapping that maps the
points of one shape to the corresponding points on the sec-
ond shape. Since the points of a shape define an arbitrary
subset of the plane R2, it is much simpler to find the cor-
respondence directly on the parameterization domain S1.
To ensure that a matching covers both parameterization do-
mains exactly once, a matching consists of two orientation
preserving bijective mappings mx,my : S1 → S1 that si-
multaneously sample points of both parameterization do-
mains. Given two shapes C1 and C2 with their curvature
functions κ1 resp. κ2, we are interested in a matching
m = (mx,my) that minimizes the following functional

Eκ2
κ1

(m) =
∫

S1
[(κ1 ◦mx − κ2 ◦my)(s)]2dm(s). (2)

In this functional, the data term (κ1 − κ2)2 is integrated
along the matching curve s 7→ (m1(s),m2(s)). Using (2),
a distance function on the shape space S can be defined.

Definition 1 (Shape Distance). Given two shapes C1, C2 ∈
S with their curvature functions κ1 : S1 → R and κ2 :
S1 → R resp., we will call

dist(C1, C2) := min
m∈Diff+(S1)2

Eκ2
κ1

(m) (3)

the distance of these shapes. Every matching fulfilling this
minimum will be called a minimal matching of C1 and C2.

The algorithm proposed in the following efficiently
computes a global optimum for functionals defined on
Diff+(S1) in a discrete setting. The field of applica-
tions therefore reaches well beyond that of matching pla-
nar shapes. To find the optimal m, a shortest circular-path
search on a constructed graph G = (V,E) will be pursued.
In this construction, the nodes vi;j ∈ V each represent a
possible point-match (c1(i), c2(j)) between the two curves.
At each point-match, there exist three different ways how
to proceed on the two curves. These three ways are repre-
sented by three outgoing edges from each node.

1. One can proceed one step on both contours. This
is represented by edges of the form (vi;j , vi⊕1;j⊕1),
where ⊕ denotes addition modulo n.

j

i

Figure 2. Shape matching as shortest path on a torus. Thin lines
represent the graph edges. The thick blue line is one example of
a matching between two shapes. Any feasible path traversing this
torus induces a correspondence of points on one shape to points
on the other.

2. One can proceed only on the first contour, which leads
to edges of the form (vi;j , vi⊕1;j), or

3. only on the second contour, represented by edges
(vi;j , vi;j⊕1).

The resulting graph G is illustrated in Figure 2. Match-
ing both shapes now involves finding a closed path on G
with minimum cost, where the cost is defined according
to (2) in the following sense. Given two curvature vec-
tors k1, k2 ∈ Rn, we may define the pairwise dissimilar-
ity mi,j := (k1,i − k2,j)2 of c1(i) and c2(j). Now, we
define the weight of an edge e = (vi;j , vk;`) by the aver-
age mi,j+mk,`

2 of their dissimilarity value. In doing so, the
weight of every path is just the sum of the vertices’ weights
along the path.

2.2. Shape Matching with Planar Graphs

Computing the shortest circular path on G could be car-
ried out with a brute-force method, where first an initial cor-
respondence is chosen, which is used as a starting point for
computing a best matching afterwards. This has to be re-
peated for all possible initial correspondences, leading to
a computation time of O(n3). Instead, we propose to use
the fast algorithm for shortest circular paths proposed in
[4]. However, this algorithm is restricted to planar graphs,
while our graph G has a cyclic, torus-like topology. In the
following, we describe a modification of [4] such that the
algorithm can be applied to the shape-matching problem.

First note that a shortest circular path on our torus-
shaped graphs could also correspond to an inappropriate
mapping, in which a contour is traced more than once, or
not at all (by only selecting edges of types 2,3 as defined
above). However, we are only interested in solutions in

i

j

n n

n

Figure 3. The path search is carried out on a graph of twice the
size of the input matrix. A viable solution has to start in the top-
left grey area and end at a matching node in the bottom-right grey
area. The three allowed directions of the edges are indicated with
the three arrows on the left side.

which each contour is traced exactly once. For this rea-
son, we duplicate the cyclic graph G such that we obtain a
graph of size 2n × (n + 1), defined as G′ = (V ′;E′) with
V ′ = {vi;j | 0 ≤ i < 2n; 0 ≤ j < n + 1} and edges
E′ = {(vi;j , vi+1;j), (vi;j , vi;j+1), (vi;j , vi+1;j+1)}. This
unfolded graph G′ is planar and any path vi;j vk;` on G′

corresponds to a path vi mod n;j mod n vk mod n;` mod n

on the original graph G. The unfolding process allows us
to explicitly count the number of wrap-arounds, since each
wrap-around corresponds to an increase of n in the corre-
sponding node coordinate.

Furthermore, when searching for the shortest circular
path, we can restrict the search w.l.o.g. such that the start-
node of the path is of the form vs = vi;0, i = 0, . . . , n− 1.
The corresponding end-node for a single wrap-around in
both coordinates is then ve = vi+n;n (see Fig. 3).

2.3. Efficient Shape Matching

In the description of the algorithm for computing the
shortest circular path, we will apply the following theorem:

Theorem 1. Let G = (V,E) with V = {vi}i be a graph
and let p1 = vi1vi2 . . . vin and p2 = vk1vk2 . . . vkm be two
minimum-cost paths. Then we can state that if p1 and p2

have two nodes vp and vq in common, there is a path p′2 =
vk1 . . . vkm with the same cost as p2, which has a common
sub-path vp vq with path p1.

A direct consequence of this theorem is that for any
two minimum-cost paths p1,p2, there exist two paths p′1,p′2
with the same start and end nodes, which cross at most
once. This property allows us to reduce the search area
by constraining it on each side with a previously computed
minimum-cost path.

The algorithm for computing the minimum cost path
vi;0 vi+n;n with unknown i < n proceeds as follows.

pc

p
l

p
L

p
R

pr

k’ k’’

(l+r)/2;0

L R

v

Figure 4. (Step 2 and 3) A shortest-path tree rooted at vc =
v(l+r)/2;0 is computed. The right-most node vk′,n for which
vc vk′,n still has a sub-path with vl is determined. The shortest
path to this node is denoted as pL. Similarly, pR is determined as
the left-most path that still has a sub-path with pr .

• Step 1: The shortest path pl from v0;0 to vn;n is com-
puted with a standard DTW algorithm. Furthermore,
we define the path pr as a copy of pl, shifted by n ele-
ments in the i-direction, i.e., vn;0 v2n;n. The paths
pl and pr are depicted in Figure 3 as the bold path and
the dashed path, respectively. Note that these two paths
constitute boundary paths which reduce the search area
from 2n2 to at most n2 + n nodes.

• Step 2: This step makes use of previously defined left
and right bounding paths pl = vl;0 vl+n;n and pr =
vr;0 vr+n;n. In the first iteration, the paths are taken
from the result of Step 1, so that l = 0 and r = n. In
later iterations, other bounding paths will be used.

We now compute a shortest-path tree, starting from the
middle node vc = v(l+r)/2;0 at the top side of the
graph (Fig. 4). In one run of the DTW algorithm,
we obtain all shortest paths to the nodes vk;n with
k ∈ l + n, . . . , r + n at the bottom side. Note that we
can limit the DTW computation to the area between
the two bounding paths pl, pr.

• Step 3: If we consider the shortest paths between vc

and the bottom side of the graph, we see that the path
vc vl+n,n obviously has a common sub-path with
pl, since both paths end at the same node. As we con-
sider destination nodes vk;n with k > l + n, there is
generally a largest k′ with l + n ≤ k′ ≤ (l + r)/2 + n
so that the shortest path vc vk′;n still has a common
sub-path with pl. Let us denote the path from vc to
vk′;n as pL, like it is depicted in Fig. 4.

Similarly, we can find a smallest k′′ with (l + r)/2 +
n ≤ k′′ ≤ r + n so that the shortest path vc vk′′;n

still has a common sub-path with pr. This defines the
shortest path pR = vc, . . . , vk′′,n.

p
l

p’

p’
r

pr

L R

l

v

v

a

e

L R

Figure 5. (Step 4) Given pl and pc, we know that all shortest circu-
lar paths ending in range L include the sub-path va ve. Hence,
build a shortest-path tree, rooted at va, in the indicated direction
on the shaded area. By combining these paths with the sub-path
va ve and the shortest-path tree below ve, all circular paths
through the range L can be obtained. The path p′l is the shortest
circular path vk′−n;0 vk′;n, which will be used as a bounding
path in the following recursion step.

• Step 4: Any circular path vi;0 vi+n;n with i ∈ L =
{l + n, . . . , k′} is known to include the common sub-
path of pl and pL. Let us denote the first node of this
sub-path as va and the last node as ve. We can now
compute the shortest circular path that ends within the
range L in a single step. To this end, we use DTW to
compute a shortest-path tree, rooted at va, extending
to the top-left and bounded by pl and pL (see Fig. 5).
We now have the shortest-path tree rooted at va to all
nodes vi;0, i + n ∈ L and (still from the processing of
Step 2) the shortest-path tree rooted at ve to all nodes
vi;n, i ∈ L. By considering the sum of the cumulative
costs for pairs of nodes vi;0, vi+n;n, we can identify the
shortest circular path for the node range L. A similar
process can be carried out to find the shortest circular
path for the node range R = {k′′; . . . , r + n}.

Finally, we use the two shortest-path trees like above
to extract the shortest-circular paths p′l = vk′−n,0
vk′,n and p′r = vk′′−n,0 vk′′,n. These two paths
will constitute new bounding paths for later processing
iterations.

• Step 5: The previous step has computed shortest circu-
lar paths for the ranges l+n, . . . , k′ and k′′, . . . , r+n.
What remains, is to compute the shortest circular paths
for the range k′ + 1, . . . , k′′ − 1. Since we also know
the circular path pc = vc v(l+r)/2+n;n, we can di-
vide the computation into two subgraphs, bounded by
the paths p′l to pc and pc to p′r. Both of these subgraphs
can be processed recursively by restarting the process-
ing at Step 2 for each of them. In the recursion, the
new pl := p′l and pr := pc for the left subgraph, and

p’

p’
r

pc

L R

l

recurse 1

recurse 2

L R

Figure 6. (Step 5) All circular paths through the ranges L and R
are already computed. Only the shortest circular paths in the range
in between remain unknown. This range is processed recursively,
first processing the graph between p′l and pc, and then between pc

and p′r .

pl := pc and pr = p′r for the right subgraph (Fig. 6).

Each processing of Step 4 gives up to two candidate
shortest circular-paths. Once the whole range of start nodes
is processed, the path with the minimum-cost path is se-
lected as the global solution.

3. Runtime Analysis
In this section, we analyze the proposed shape matching

method and compare it to state of the art methods. First,
we will prove that the worst case complexity of our method
is O(n2 log(n)) where n is the number of sample points
on both shapes. In the second subsection, a direct runtime
comparison will be provided.

3.1. Sub-cubic Runtime

The proposed method of Section 2.3 defines a planar
graph G = (V,E) on a rectangular grid V ′ = {vi;j | 0 ≤
i < 2n; 0 ≤ j < n + 1}. We are now looking for a
shortest path from vi;0 to vi+n;n where i varies over the set
{0, . . . , n−1}. Since our method works recursively, we are
especially interested in any connected subgraph (V ′, E′)
of G that includes a certain subset of the two boundaries
B1 := {v0;0, . . . , vn−1;0} and B2 := {vn;n, . . . , v2n−1;n}.

Lemma 1. Let G′ = (V ′, E′) be a connected subgraph of
G containing b > 1 corresponding boundary elements, i.e.

vi;j ∈ (V ′ ∩B1) ⇔ vi+n;j+n ∈ (V ′ ∩B2),

where b = |V ′ ∩Bi| for i = 1, 2. Then the algorithm finds
the shortest path connecting an element vi;j ∈ B1 to its
corresponding element vi+n;j+n ∈ B2. Moreover, the num-
ber of calulation steps T (N, b) is bounded from above by
N(log(b− 1)+2)+2n(b− 1) log(b− 1) where N := |V ′|
is the number of vertices in G′.

Proof. Since G′ is a subgraph of G, any shortest path given
a start vertex and a target vertex can be calculated within
N calculation steps using Dynamic Time Warping (DTW).
This property will be used during this proof. We like to
prove this lemma by complete induction over the boundary
length b.

Initialization: For b = 2, the problem can be solved by
two DTW runs. Therefore, the upper bound holds.

Induction step: Assuming, we have proven the upper
bound for all boundary lengths 1 < b′ < b. Now,
we like to prove this upper bound for b itself. First,
the algorithm calculates a shortest path from the cen-
tral point of the boundary which takes N calculation
steps. By doing so, the graph G′ is split into a left and
a right subgraph with NL resp. NR vertices whereas
NL + NR ≤ N + 2n. If in any of these subgraphs
the two boundaries touches one another, we can cal-
culate a valid minimal path in the subgraph in NL

resp. NR steps. Otherwise, the induction hypothesis
for b′ < b+1

2 is applicable and the runtime is bounded
from above by

N + T

(
NL,

b + 1
2

)
+ T

(
NR,

b + 1
2

)
≤ N(log(b− 1) + 2) + 2n

(
b log

b− 1
2

+ 2
)

≤ N(log(b− 1) + 2) + 2n(b− 1) log(b− 1)

With this lemma, the worst case runtime of the proposed
matching algorithm can be characterized as follows.

Theorem 2. The proposed shape matching algorithm has a
worst-case complexity of O(n2 log(n)).

Proof. Since G = (V,E) is a subgraph of itself with b = n
boundary elements and N = n2 + n vertices, Lemma 1
guarantees that the shortest path can be calculated in less
than 3n2 log(n− 1) + 2n2 − n log(n− 1) + 2n steps.

3.2. Experimental Comparison

The above bound of O(n2 log(n)) on the computation
time was proven based on a worst case analysis. In prac-
tice, the computation time is well below this worst case
bound: As discussed in Step 4 of Section 2.3, the algorithm
cuts away parts of the graph, for which it can immediately
compute the optimal solution. For most shape comparisons,
such cases arise instantly, such that the recursion terminates
after very few iterations.

Figure 7 shows a quantitative benchmark test of the pro-
posed method and three state-of-the-art shape matching al-
gorithms:

Figure 7. Experimental runtime comparison. In contrast to
DTW, Branch-and-Bound and the cyclic-string approach [8], the
proposed recursing cyclic matching algorithm exhibits consis-
tently lower run-times, in particular for larger problem size.

Dynamic Time Warping For every possible initial match
(i, 0), we look for the shortest path from the point (i, 0)
to the point (i + n, n) within the graph G = (V,E)
using dynamic programming (DTW). To find a match,
we always need O(n3) calculation steps.

Branch and Bound This method divides the set
of initial matching recursively in subsets
S ⊂ {(0, 0), . . . , (0, n − 1)}. Then the DTW
method looks for a shortest path through S until
the shortest path is a valid matching, i.e. a cycle
in the graph G = (V,E). The worst case is still
O(n3), but under some conditions, an average case of
O(n2 log(n)) is possible [1].

Cyclic String Approach In [8], a shape matching ap-
proach was presented that essentially uses Step 1, 2
and 5 of our approach.

For two shapes and an increasing discretization level
which ranges between 50 and 1000 points per shape, we
compared the runtime of the described methods. While
all algorithms compute the same matching, the proposed
method exhibits consistently lower run-times, in particular
for larger discretization. Moreover, it offers a predictable
performance, in the sense that the computation times ex-
hibit a smaller spread than those of Branch and Bound.

4. Application: Shape Clustering
Minimizing the functional (2) not only provides a match-

ing between two given shapes. The cost of the shortest path
can be interpreted as a distance between the two shapes.

Figure 8. Shape Clustering. For a database of 40 shapes from
four different classes, we computed the pairwise distances (3) us-
ing the algorithm presented above. Based on the matrix of pair-
wise distances, we computed a clustering and a 2D-embedding of
all shapes. The plot shows that the clustering respects the seman-
tic of the given shapes. This indicates that the proposed matching
algorithm provides shape distances which reproduce the human
notion of shape similarity for this data base.

In order to demonstrate that the shape distance (3) in-
deed captures a meaningful notion of shape dissimilar-
ity, we applied the shape matching algorithm introduced
above to compute a clustering of a set of n = 40 shapes
{C1, . . . , Cn}. To this end, we applied a curvature descriptor
[11]1 on a subset of the LEMS shape database [13] which
describes the shape classes hand, human, ray and tool. Fi-
nally, we computed the matrix D of pairwise distances

D2
ij = dist(Ci, Cj), ∀ i, j = 1, . . . , n. (4)

and performed a k-means clustering with k = 4 clusters.
For visualization, we embedded all shapes into a two-

dimensional space by multi-dimensional scaling (MDS),
thereby optimally preserving the pairwise distances, i.e. we
computed a set of points{

x1, . . . , xn ∈ R2, such that |xi − xj |2 ≈ D2
ij ∀i, j

}
.

Figure 8 shows these 2D points with their cluster mem-
bership color-coded. The clear separation of four clusters
associated with the four shape classes indicates that the
computed pairwise distances reproduce the human notion
of shape similarity for this data base.

5. Conclusion
We proposed an efficient algorithm to solve the combina-

torial problem of matching two planar shapes. The mapping
of points along one contour to corresponding points along
the other is determined by finding the shortest circular path
on a torus, the nodes of which encode the local similarity of
a robust curvature measure at respective point pairs.

1The curvature descriptor introduced in [11] differs from that in [9] in
the sense that it is a consistent first-order approximation of the curvature.

In particular, our algorithm efficiently incorporates the
search over the initial correspondence. The key idea is to
slice the torus and convert it to a planar graph without reduc-
ing the solution of permissible matchings. Subsequently, we
use a divide-and-conquer technique to cut down the search-
space in the recursion steps. To the best of our knowl-
edge, this constitutes the fastest algorithm for combinatorial
matching of planar shapes published so far.

In a benchmark test, we demonstrated that the proposed
algorithm consistently outperforms state-of-the art match-
ing algorithms, providing problem-specific speed-up factors
of 2 over the cyclic-string method [7] and up to 100 over the
DTW method. In a shape clustering application, we showed
that the computed shape distances reproduce human notions
of shape similarity.

References
[1] B. C. Appleton. Globally minimal contours and surfaces for

image segmentation. PhD thesis, University of Queensland,
Australia, December 2004.

[2] R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determin-
ing the similarity of deformable shapes. Vision Research,
38:2365–2385, 1998.

[3] R. E. Bellman. Dynamic Programming. Princeton University
Press, Princeton, New Jersey, 1957.

[4] D. Farin and P. H. N. With. Shortest circular paths on planar
graphs. In 27th Symposium on Information Theory in the
Benelux, pages 117–124, June 2006.

[5] Y. Gdalyahu and D. Weinshall. Flexible syntactic matching
of curves and its application to automatic hierarchical classi-
cation of silhouettes. IEEE PAMI, 21(12):1312–1328, 1999.

[6] D. Geiger, A. Gupta, L. Costa, and J. Vlontzos. Dy-
namic programming for detecting, tracking and matching de-
formable contours. IEEE PAMI, 17(3):294–302, 1995.

[7] M. Maes. On a cyclic string-to-string correction problem.
Inf. Process. Lett., 35(2):73–78, 1990.

[8] M. Maes. Polygonal shape recognition using string-matching
techniques. Pattern Recognition, 24(5):433–440, 1991.

[9] S. Manay, D. Cremers, B.-W. Hong, A. Yezzi, and S. Soatto.
Integral invariants for shape matching. IEEE PAMI,
28(10):1602–1618, 2006.

[10] D. Sankoff and J. B. Kruskal. Time Warps, String Edits
and Macromolecules: The Theory and Practice of Sequence
Comparison. Addison-Wesley, Reading, MA, 1983.

[11] F. R. Schmidt, E. Töppe, D. Cremers, and Y. Boykov. Effi-
cient shape matching via graph cuts. In EMMCVPR, volume
4679 of LNCS, pages 39–54. Springer, August 2007.

[12] T. Sebastian, P. Klein, and B. Kimia. On aligning curves.
IEEE PAMI, 25(1):116–125, 2003.

[13] D. Sharvit, J. Chan, H. Tek, and B. Kimia. Symmetry-based
indexing of image databases, 1998.

