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Römerstr. 164, 53117 Bonn, Germany
{schmidtf, clausen, dcremers}@cs.uni-bonn.de

Abstract. Klassen et al. [9] recently developed a theoretical formula-
tion to model shape dissimilarities by means of geodesics on appropriate
spaces. They used the local geometry of an infinite dimensional manifold
to measure the distance dist(A, B) between two given shapes A and B. A
key limitation of their approach is that the computation of distances de-
veloped in the above work is inherently unstable, the computed distances
are in general not symmetric, and the computation times are typically
very large. In this paper, we revisit the shooting method of Klassen et
al. for their angle-oriented representation. We revisit explicit expressions
for the underlying space and we propose a gradient descent algorithm
to compute geodesics. In contrast to the shooting method, the proposed
variational method is numerically stable, it is by definition symmetric,
and it is up to 1000 times faster.

1 Introduction

The modeling of shapes and distances between shapes is one of the fundamental
problems in Computer Vision with applications in the fields of image segmen-
tation, tracking, object recognition, and video indexing. In recent years, a con-
siderable amount of effort has been put into the understanding of closed planar
curves modulo some transformations, which will be referred to as shapes. To
measure the dissimilarity between two given shapes requires the definition and
examination of metric spaces which model shapes (cf. [7,4,5,1]).

In 2003, Michor and Mumford [11] described a way to define a shape space
using manifolds. The distance between two given shapes were defined as the
minimal length of a path m on the manifold connecting these shapes. Such paths
are known as geodesics. The model is presented in a very general fashion, i.e.,
in order to calculate geodesics on this manifold, a partial differential equation
(PDE) has to be solved. Hence, it is not suitable for online-calculation to find
the shortest geodesic between two given shapes.

In the same year, Klassen et al. also presented metric spaces using manifolds
[9].1 Their model is focused on closed planar curves parametrized by arclength.
� This work was supported by the German Research Foundation, grant #CR-250/1-1.
1 For an extension of the notion of geodesics to closed curves embedded in R

3 we refer
to [8].
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This simplification led to an ordinary differential equation (ODE) instead of
a PDE for the geodesic-calculation. Moreover, the calculation of the shortest
geodesic could in many cases be done within seconds using the so called shooting
method. This method uses a searching beam from the initial shape. That beam
will be changed until the target shape is found, where the beam is deformed
according to the underlying metric just as a light beam is bent by gravity in the
theory of general relativity.

In this paper, we will use the same manifold that was introduced in [9]. But we
will abandon the shooting method and replace it by a variational method which is
more stable, by definition symmetric and allows a faster algorithm than the algo-
rithm introduced by Klassen et al. This variational method is a gradient descent
method with respect to the energy functional E(m) :=

∫ 1

0
〈m′(t), m′(t)〉m(t) dt.

This paper is organized as follows. In Section 2 we revisit the shape space
and a toolbox of helpful functions that were presented in [9]. In Section 3 we
review the shooting method and introduce an alternative variational method to
calculate geodesics on the shape space. In Section 4 we compare both methods
with special interest on correctness, accuracy and computation time. In Section
5 we provide a conclusion.

2 Modeling Shapes

Given any smooth closed planar contour Γ ⊂ C, the group of translations, ro-
tations and uniform scalings creates a family [Γ ] of closed planar contours. The
elements of this family have all one property in common - their shape. Therefore,
we will consider the set of all such families and call this set the shape space. In this
section, we will revisit a manifold that was proposed in [9] to handle this shape
space. We are especially interested in morphings, i.e., smooth short transforma-
tions from one given shape to another. On the manifold, these morphings will be
described by geodesics [6,3]. Hence, on the shape space a metric is induced which
provides a measure of the dissimilarity of two given shapes.

2.1 Manifold of Preshapes

To model shapes, we consider closed planar curves that are parametrized via
the unit circle S

1 = {x ∈ C| ‖x‖ = 1}. A closed planar curve is therefore a C∞-
mapping c : S

1 → C with a non-vanishing derivative c′. Because the derivative
of the mapping c ignores translation of the contour Γ , we will consider c′ instead
of c. To get rid of possible scalings, we fix the length of Γ by 2π. This can be
achieved by modeling any shape via curves c : S

1 → C that are parametrized by
arclength. Thus, c′ : S

1 → S
1 can be modeled via a C∞-mapping ϑ : [0; 2π] → R

which realizes the following lifting-equations c′(eit) = eiϑ(t) and ϑ(2π) = ϑ(0) +
2π. This mapping ϑ is unique up to addition of a constant 2π�, � ∈ Z. Moreover,
the addition of any r ∈ R to ϑ is equivalent to a rotation of c by the angle r. These
observations lead to the manifold2 C := Ψ−1((2π2, 0, 0)�) ⊂ L2 := L2([0; 2π], R),
2 In [9], two different manifolds were presented. We will restrict ourselves to the mani-

fold that handles the angle-oriented mapping ϑ.
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Ψ(ϑ) :=
(∫ 2π

0

ϑ(τ) dτ ,

∫ 2π

0

sin(ϑ(τ)) dτ ,

∫ 2π

0

cos(ϑ(τ)) dτ

)�
.

As it was outlined in [9], this manifold C does not describe the shape space.
Moreover, one shape [Γ ] can possess multiple representations in this so called
preshape space C. To be specific, for any α ∈ R the mappings c : t �→ c(eit) and
cα : t �→ c(ei(t+α)) describe the same closed planar contour Γ ⊂ C. Let ϑ and
ϑα be the lifting representation for c resp. cα. Then, the set {ϑα|α ∈ [0; 2π[} =:
ϑ · S

1 ⊂ C contains all different representations of ϑ within C that describe the
same shape (cf. Figure 1). The notation ϑ · S

1 is motivated by the fact that

Fig. 1. Since any shape can be parametrized with differing starting points, it corre-
sponds to a family of preshapes which form a closed curve on the manifold of preshapes.
Symmetries of a given shape will be reflected by multiple coverings of this curve. In
the case of a circle, this preshape curve will collapse to a single point.

α �→ ϑα is a group operation with at least 2πZ as stabilizer. The shape space
S := C/S

1 consists of all orbits ϑ · S
1 ⊂ C [9]. Therefore, any metric distC on C

induces the metric

distS(ϑ1 · S
1, ϑ2 · S

1) := min
s1∈S1

min
s2∈S1

distC(ϑ1 · s1, ϑ2 · s2) (1)

on S. In the next section, we will discuss the metric on any manifold M that
is induced by geodesics. This geodesic metric will be used as distC and thus,
induces distS via (1).

2.2 Geodesics on Manifolds

In this section, we will present the idea of geodesics and two different ways
to calculate geodesics. Let E be a Euclidean k-dimensional vector space (e.g.,
R

k ⊂ R
n). E possesses a scalar product denoted by 〈·, ·〉. Using this product, the

length of any smooth path m : [0; 1] → E is len(m) :=
∫ 1

0 〈m′(t), m′(t)〉 1
2 dt. The
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distance of two arbitrary points x, y ∈ E can be defined as the minimal length
of smooth paths that connect these two points, i.e., m(0) = x and m(1) = y. To
any path m, there exists a path m̃ of same image and length that is parametrized
by arclength. Moreover, every path of minimal length that is parametrized by
arclength also minimizes the energy-functional E(m) :=

∫ 1

0 〈m′(t), m′(t)〉 dt. In
the case of E = R

k, the Euler-Lagrange equation becomes 0 ≡ d
dtm

′ ≡ m′′.
Paths which realize this equation are called geodesics.

Now, consider any embedded k-dimensional manifold M ⊂ R
n, e.g., a sphere

or a cylinder. At any point x ∈ M there exists the k-dimensional tangent space
TxM . On this tangent space the scalar product of R

n induces a scalar product
denoted by 〈·, ·〉x. Given any smooth path m : [0; 1] → M , the length of this

path can be calculated by len(m) :=
∫ 1

0
〈m′(t), m′(t)〉 1

2
m(t) dt. Analogously to the

Euclidean space, geodesics can be defined and a geodesic equation can be found.
In the Euclidean case, m′ and m′′ are k-dimensional vector fields along m. In the
case of a manifold, only m′ is a k-dimensional vector field, i.e., m′(t) ∈ Tm(t)M .
On the other hand, m′′ is an n-dimensional vector field that can be split into a
tangential (k-dimensional) vector field m′′ tan and a normal vector field m′′ nor.
With this notations the geodesic equation becomes 0 ≡ m′′ tan. Given a starting
point x ∈ M and a starting direction v ∈ TxM , the following differential equation

m(0) = x m′(0) = v m′′ tan(t) ≡ 0

can be uniquely solved by a path mx,v : R → M . This property leads to the
definition of the so called exponential mapping expx(v) := mx,v(1). Using this
mapping, the distance of two arbitrary points x, y ∈ M is

distM (x, y) := min
m smooth path,

m(0) = x, m(1) = y

len(m) = min
v∈TxM :

y=expx(v)

〈v, v〉 1
2
x . (2)

While the shooting method used in [9] makes use of the exponential mapping
starting from an initial velocity v as indicated on the right side of (2), the
variational method proposed in this paper directly relies on the definition of
distM in the middle of (2).

2.3 Technical Issues

In this section, we will revisit a toolbox of functions that was presented in [9].
One important function that was used in [9], is the projection from an arbitrary
function ϑ ∈ L2([0; 2π], R) ⊃ C onto the manifold. In [9, Section 3.2; Case 1]
such a projection was elaborated. We will denote the projection by

Pε : L2([0; 2π], R) → Cε,

where
Cε := Ψ−1

({
r
∣
∣
∣
∥
∥
∥r − (

2π2, 0, 0
)�∥

∥
∥ < ε

})



146 F.R. Schmidt, M. Clausen, and D. Cremers

describes the manifold C which is thickened by ε. Cε is an open subset of
L2([0; 2π], R), and thus a manifold which contains C as a submanifold.

We will also need the projection from the space L2([0; 2π], R) on the tangent
space TϑC for any function ϑ ∈ C. This projection can be computed efficiently
due to the small codimension of C (= 3) [9]. From now on, this projection will
be denoted

Pϑ : L2([0; 2π], R) → TϑC.

To measure the distance of two given shapes ϑ1 ·S1 and ϑ2 ·S1, the expression

inf
s1∈S1

inf
s2∈S1

‖ϑ1 · s1 − ϑ2 · s2‖L2 = inf
s∈S1

‖ϑ1 − ϑ2 · s‖L2

has to be calculated. The last equation holds since S
1 operates as an isometry on

C. Moreover, finding the minimizing s ∈ S
1 can be calculated via Discrete Fourier

Transform [10]. Thus, this calculation needs only O(n log(n)) multiplications [2].
The function to calculate s ∈ S

1 given the preshapes ϑ1 and ϑ2 will be denoted
dftC : C × C → S

1.

3 Calculating Local Shape Morphings

In this section, two different algorithm to calculate geodesics between given
shapes will be presented. Both algorithms will calculate the distance defined by
(2). The first algorithm was presented by Klassen et al. [9] and uses a lineariza-
tion of the exponential mapping. The second algorithm – proposed in this paper
– will use the geodesic equation as gradient descent to minimize the functional
E(m).

3.1 Morphing Via the Exponential Mapping

As we have seen, the following functional can be calculated efficiently using dftC .

Hϑ2
ϑ1

(f) = inf
s∈S1

∥
∥expϑ1

(f) − ϑ2 · s
∥
∥2

L2 , f ∈ Tϑ1C. (3)

The linearization of expϑ1
(f) is explained in detail in [9]. The distance between

the orbits ϑ1 · S
1 ⊂ C and ϑ2 · S

1 ⊂ C is the minimal ‖f‖ of any f that realizes
the minimal value of Hϑ2

ϑ1
(·).

The above method has some important drawbacks. First of all, the numerical
stability of expϑ(·) depends very much on the curvature at the point ϑ. Hence,
one expects an asymmetric runtime behavior, because the curvature of C is
heterogenous. In addition, the last operation that is calculated in (3) is the shape
alignment via dftC . Hence, this method can get stuck in a local minimum. In
Section 4 we will provide an example of this problem. One additional drawback
is the runtime of this method. In the next section, we propose an alternative
variational approach to compute geodesics which resolves all these drawbacks.
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f
TϑC

ϑ

C

Fig. 2. A deformation f from a given preshape ϑ is orthogonal to the tangent space
TϑC at this given preshape, iff the projection of the deformed preshape ϑ + f onto the
preshape manifold C is equal to ϑ

3.2 Morphing Via the Geodesic Equation

Instead of restricting ourselves to the tangent space of a preshape ϑ1 and trusting
in the numerical stability of expϑ1

(·), let us consider the entire path from ϑ1 to
ϑ2. With the help of the geodesic equation m′′ tan ≡ 0 it is easy to verify, whether
a given path is a geodesic or not. Moreover, the geodesic equation guarantees
an equidistant path and thus, a variational approach will take care of an online
gauge fix.

If m fails to be a geodesic, m′ is a non-parallel vector field along m and m′′ tan

measures the curvature of m within the manifold C. Let us observe this measure
in a discretized version of m in detail. The path shall be discretized in n ∈ N

equidistant preshapes. Each preshape shall be discretized in N ∈ N points. Thus,
a discretized path is

mN,n :=

(

m(0)N , . . . , m

(
i

n − 1

)N

, . . . , m(1)N

)

∈ R
N×n , whereas

ϑN :=
(

ϑ(0), . . . , ϑ
(

i

N

)

, . . . , ϑ

(
N − 1

N

))�
∈ R

N .

The discretized versions of Pε and Pϑ will be known as PΔ
ε resp. PΔ

ϑ . The vector

field m′ can be discretized by 1
nm′

(
i+0.5
n−1

)
≈ mN,n

·,i+1 − mN,n
·,i and the geodesic

equation becomes

0 =PΔ
mN,n

·,i

((
mN,n

·,i+1 − mN,n
·,i

)
−

(
mN,n

·,i − mN,n
·,i−1

))

= − 2PΔ
mN,n

·,i

(

mN,n
·,i − mN,n

·,i−1 + mN,n
·,i+1

2

)

.

Because of 0 = Pϑ(f) ⇔ ϑ ≈ Pε(ϑ + f) (cf. Figure 2), we obtain the equation

mN,n
·,i =PΔ

ε

(
mN,n

·,i−1 + mN,n
·,i+1

2

)

. (4)
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Equation (4) can be interpreted as an iteration rule, that simulates the gradient
descent and thus, moves a given path towards a geodesic. During this process the
starting preshape mN,n

·,1 and the target preshape mN,n
·,n aren’t be altered. Thus,

this process converges towards a geodesic from ϑ1 to ϑ2. To calculate a geodesic
from ϑ1 to the orbit ϑ2 · S

1, we calculate a realignment in every iteration step.
Our proposal for the iteration step is therefore3

Step 1: for (i=1; i<n-1; i++) {

mN,n
·,i := PΔ

ε

(
mN,n

·,i−1+mN,n
·,i+1

2

)

}
Step 2: for (i=1; i<n; i++) {

mN,n
·,i := mN,n

·,i * dft_C(mN,n
·,i , mN,n

·,i−1);
}

By this extended iteration the starting preshape ϑ1 remains fix but the target
preshape ϑ2 can be modified. This modification will only take place along the
orbit ϑ2 · S1 and thus, the shape of ϑ2 remains the target of the morphing.

4 Benchmarking

To illustrate the difference between these two algorithms, we will discuss a spe-
cific morphing example. For this purpose, we have used the SQUID database of
fish shapes [12]. In the first subsection, we will examine the morphing process
between a seahorse and a starfish. This morphing will be done with a very high
resolution (N = 500 angles along each preshape; n = 300 intermediate morph-
ing steps). Specifically we show that the shooting method gets stuck in a local
minimum, whereas the variational method calculates the global minimum with
respect to shape realignments. In the second subsection we will analyze the speed
of both algorithms for N = 500 and n = 1, . . . , 100, showing in particular that
our variational method computes minimas within seconds where the shooting
method takes more than one hour.

4.1 Dissimilarity of a Seahorse and a Starfish

Figure 3 shows the morphing of a seahorse towards a starfish. The first row shows
the morphing according to the shooting method, whereas the second row shows
the result of the variational method. Both are valid morphings of preshapes, but
the calculated alignments are different in both algorithms. This leads to a self-
intersection in the first case, whereas in the second case, the tail of the seahorse
unrolls in an expected natural manner. This is due to the different alignments
of the target shape. To emphasize the alignments, the same region of the target
shape is colored. It’s easy to see that the variational method moves the tip of the
tail towards the tip of that region. Moreover, the first geodesic has the length
13.8, whereas the second geodesic has the length of 12.2. Therefore, the shooting
method gets stuck in a local minimum.
3 Note that each index starts at 0.
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Fig. 3. The morphing of a seahorse towards a star fish is calculated via both algorithms.
First row: The shooting method [9] gets stuck in a local minimum. Second row: Our
variationalmethod calculates the globalminimum with respect to realignments.Lastcol-
umn:To illustrate the different alignments, the same region is colored in the target shape.

Fig. 4. Here the computation time to calculate geodesics is presented. The shapes are
highly resoluted and on the x-axis the discretization of the morphing is shown. The
runtime via the variational method has two advantages. Symmetry: The geodesic
calculation does not depend on the starting shape, whereas the runtime for the shooting
method varies by ca. 25%. Runtime: The variational method is faster by a factor of
1000.

In this example, we used a discretization of N = 500 for the preshapes. There-
fore, there exist 500 different alignments for the target preshape. Calculating the
geodesic distance between the preshapes with respect to all alignments, we could
confirm that 12.2 is the global minimum with respect to preshape alignment.
Thus, the calculation of realignments serves the purpose of finding the minimal
distance between two given shapes.
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4.2 Computation Time

Figure 4 shows the computation time of both methods. It varies from the com-
putation time in [9] because we use highly resoluted preshapes and the methods
stop only if they can provide a very accurate result. On the horizontal axis the
discretization resolution of the geodesic is noted. For the shooting method this is
the discretization of the exponential mapping. For the variational method this is
the number of shapes that discretize the path on the manifold. First of all, we see
that the computation time is not symmetric for the shooting method. Moreover,
the computation time varies by 20 to 30 percent. This is due to the fact that
the shooting method depends highly on the curvature at the starting shape. The
variational method is symmetric and thus, the runtime does not depend on the
starting shape. In addition, the calculation time is less than 100 milliseconds in
the highly resoluted case. If we use the same resolution as in [9], the variational
method takes only a few milliseconds.

5 Conclusion

We presented a new variational approach to calculate geodesics in the shape
space introduced in [9]. This shape space consists of S

1-orbits within a manifold.
We start with an arbitrary parameterization of two given shapes and a path
between these two points of the manifold. This path is then shortened via our
variational method by alternating a two-step iteration process. The first step uses
a gradient descent method and the second step realigns efficiently all preshapes
along the observed path.

The proposed variational approach has several advantages over the shooting
method used in [9]: Firstly, it is more stable since in contrast to the exponential

Fig. 5. The confusion matrix for a set of nine shapes
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map, the variational method does not accumulate projection errors. Moreover,
our gradient descent method provides an online gauge fix. Secondly, the formula-
tion of the variational method does not rely on the starting shape, and thus the
formulation of the metric is numerically symmetric. Thirdly, the calculation time
is considerably smaller. In our examples, the calculation time typically improves
by a factor of 1000. In addition, in our experiments our algorithm provides the
globally optimal alignment between the given shapes. The practical implication
of these drastic improvements in speed is that for a database of 100 shapes of
high resolution, the confusion matrix consists of 4950 different entries and can
be calculated in 8 minutes instead of 5 days4. Thus, the efficient use of this
metric allows to cluster a considerable amount of shapes (cf. Figure 5). Future
work will be focused on generalizing the concepts of geodesics on shape spaces
to higher-dimensional shapes (e.g., surfaces).
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